
(NASA-CR-18724d) RESEARCH AND DEVELOPMENT

FOR ON_OARD NAVIGATION (ONAV) GROUND BASED

EXPERT/TRAINER SYSTEM: ONAV ENTRY EXPERT

SYSTEM CODE (LinCom Corp.) 18! p CSCI I_B

:-o _'2 "/0
C;

N?I-L2720

Uncl as

r,3/14 030_270

Research and Development for Onboard
.Navigation (ONA V)

Ground Based Expert/Trainer System

ONA V Entry Expert System Code

m

Daniel C. Bochsler

LinCom Corporation

-- ... January 28, 1988

Cooperative Agreement NCC 9-16
Research Activity No. AL8

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

......... I I

- T:E_C:H.N.I.C.A'L R'E'P'O'R" T

The
RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into
a three-year cooperative agreement with UH-Clear Lake be.ginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-CIear Lake and NASA/JSC.

w

Research and Development for
Onboard Navigation (ONA V)

Ground Based Expert�Trainer System

ONA V Entry Expert System Code

n

r

m

Preface

This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by LinCom Corporation under the direction of

Daniel C. Bocshsler. Terry Feagin, Professor of Computer Science at the University

of Houston - Clear Lake, served as the technical representative for RICIS.

Funding has been provided by the Mission Planning and Analysis Division,

NASA/JSC through Cooperative Agreement NCC 9-16 between NASA Johnson

Space Center and the University of Houston - Clear Lake. The NASA Technical

Monitor for this activity was Robert Savely, Head, Artificial Intelligence Section,

Technology Development and Applications Branch, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

w

w

w

w

Research and Development for Onboard Navigation (ONAV)

Ground Based Expert/Trainer System

ONAV ENTRY EXPERT SYSTEM CODE

(Deliverable C)

Prepared For:

Dr. Terry Feagin

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

v

u

Prepared By:

Daniel C. Bochsler

LinCom Corporation

18100 Upper Bay Road, Suite 208

Houston, Texas 77058

Performed Under:

Project No. AI.8

Cooperation Agreement no. NCC9-16
Subcontract No. 005

January 28, 1988

EXPERT SYSTEM CODE FOR THE ONBOARD NAVIGATION (ONAV)

CONSOLE EXPERT/TRAINER SYSTEM

v

v

=

ENTRY PHASE

January 1988

"w

v

LinCom Corporation

Houston Texas

w

TABLE OF CONTENTS

v

Section

2

2.1

2.2

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

4

SUMMARY o o o o o o , , o o o . , . . , o , , • • • • • • • • • • • • • •

INTRODUCTION

Purpose

Rule Organization Overview

SOURCE CODE _

Initial Conditions

Telemetry Status

Runway Status
Inertial Measurement Units

State Vectors

Three-String State Vectors

Drag Altitude

Tactical Air Navigation

Baro Altitude

Microwave Scan Beam Landing System .

High Speed Trajectory Determinator .

Control Flow

Operator Input

Output Management
Data Tables

REFERENCES

Page

i-i

2-1

2-1

2-1

3-1

3-2

3-9

3-11

3 -16

3-55

-66

3-72

3-77

3-118

3-127

3-145

3-150

3-153

3-158

3-164

4-1

ii

PRECEDING PAGE BLANK NOT FILMED

This document provides the user with a listing of the expert

rules for the ENTRY phase of the Onboard Navigation (ONAV)

Console Expert/Trainer system. Included is an overview of each

group of rules into which the program is divided.

V

1 - 1

w

v

v

v

w

Section 2

INTRODUCTION ,_

i \ _._

2.1 PURPOSE /i \. #_, ,-

Th_purpose of this document is to present a comple£e listing'of

the expert system rules for the Entry phase of the bNAV expert

system. These source listings appear in the same format as

utilized and required by the CLIP_-_C Language Integrated

Production System) expert system shell which is the basis for

the ONAV entry system.

2.2 RULE ORGANIZATION OVERVIEW _:"

Figure 2.2-1 gives a schematic overview_of how the rules are

organized. These groups result from a partitioning of the rules

according to the overall function which a given set of rules

performs. This partitioning was established and maintained
according to that established in the knowledge specification

document,,[l].

In addition, four other groups of rules are specified in this

document. The four groups (control flow, operator inputs, output

management, and data tables) perform functions that affect all

the other functional rule groups. As the name implies} I) control
flow ensures that the rule groups are executed in the order

required for proper operation; 2) operator input rules control
the introduction into the CLIPS fact base of various kinds of

data required by the expert system; 3) output _rules

control the updating of the ONAV expert system user display

screen during execution of the system; and 4) data tables are
static information utilized by many different rule sets gathered

in one convenient place.

r_

2 - 1

\5

tim

v

v

v

w

2 - 2

v

w

Section 3

SO___URC_ CODE LISTINGS

The following sections provide lists of the Entry ONAV expert system
source code in the CLIPS format.

v

V

3 - 1

3.1 Initial Conditions

t .

w r

m.

3 - 2

GROUP

Initial Conditions (3.1)

This group handles some global types

of info used by many rules sections

(e.g., engaged system, system availability

wrong atmosphere, wrong major mode, etc.).

CONTROL FACTS

(sub-phase init ?)

CONTAINING GROUP

Entry

;;; FACTS

(deffacts monitoring-init-phases ;These facts list the sequence of

;sub phases in the monitoring phase
;of the init rules

(first-sub-phase init monitoring status)

) ;There is only 1 subphase

(deffacts init-phase-facts

(engaged-system none)

(system-available none)

;This fact indicates which

;system pass or bfs is the

;proper source of information

;default is set to none

(deffacts string-phases

(first-sub-phase

(first-sub-phase

--)

string

string

monitoring commfault)

analysis clear)

(deffacts initial-strings

(prev-string-cf pass 1 off)

(prev-string-cf pass 2 off)

_ (prev-string-cf pass 3 off)

(prev-string-cf pass 4 off)

(prev-string-cf bfs 1 off)

(prev-string-cf bfs 2 off)

-- (prev-string-cf bfs 3 off)

(prev-string-cf bfs 4 off)

--)

(defrule engaged-system-is-bfs

;; IF

y ;;

;; THEN

;;
ENDv ;;

BFS engage is on

BFS is the engaged system

3

PRECEDING PAGE BLANK NOT FILMED

; !

(sub-phase init status)

(bfs-engage on)

?x <- (engaged-system ~bfs)
=>

(retract ?x)

(assert (engaged-system bfs)))

-- (defrule engaged-system-is-pass

--;; IF

;;
;; THEN

;;

;; END

BFS engage is off

PASS is the engaged system

(sub-phase init status)

(bfs-engage off)

?x <- (engaged-system -pass)
=>

(retract ?x)

(assert (engaged-system pass)))

;;
;;

_;;
;;

;;

;; Note: The following 3 availability rules were implemented

with the assumption that CLIPS would ensure that

two duplicate facts are not allowed to reside in

the fact base. These rules will cause duplicate

facts to be generated; therefore, proper operation

depends upon the above stated feature of CLIPS to

be active.(i.e., check-facts function is assumed to

be "on".)

(defrule system-availability-bfs-only

;; IF

;;

;; THEN

;;

the BFS is engaged

the BFS is the only system available

(sub-phase init status)

(engaged-system bfs)

?x <- (system-available -bfs)
->

(retract ?x)

(assert (system-available bfs)))

; r

;;
__-;;

(defrule system-availability-pass-only

IF

THEN

the BFS is not engaged

the BFS is no go

the PASS is the only system available

4

(sub-phase init status)

(not (engaged-system bfs))

(bfs-status no-go)

?x <- (system-available -pass)
=>

(retract ?x)

(assert (system-available pass)))

(defrule system-availability-both

;;

;;

;;

_- ;;

IF

THEN

the BFS is not engaged
the BFS is Go

both systems are available

(sub-phase init status)

(not (engaged-system bfs))

(bfs-status go)
=>

(assert (system-available bfs))

(assert (system-available pass)))

; f

-- (defrule wrong-atmosphere

;;

_;;

;;

;;

;;

;;

_ ;;

IF

THEN

END

For the engaged system

The ONAV operator desired atmosphere model
is not the same as the downlisted model

Notify operator that crew has incorrect atmosphere
selected

Recommend call to crew to select the desired atmosphere

(sub-phase init status)

(engaged-system ?sys)

(atmosphere desired ?model)

(atmosphere ?sys -?model)
=>

(assert (status-light drag 0

(if (eq ?model nominal) then

(bind ?item 37)

else (if (eq ?model cold) then

(bind ?item 38)
else

_- (assert

atmos))

(bind ?item 39)))

(recommend drag atmos off-nominal alt

"Need to select the " ?model " atmosphere by ITEM "

?item " on SPEC 51")))

r

(defrule right-atmosphere

; ; IF

,5

The desired atmosphere is the same as the downlisted
atmosphere

THEN

Notify operator that correct atmosphere is selected

(sub-phase init status)

(engaged-system ?sys)

(atmosphere desired ?model)

(atmosphere ?sys ?model)
=>

(assert (status-light drag 0 blank)))

(defrule wrong-major-mode

; t

;;

;;

;;
;;

;;

;;

IF

THEN

For the available systems,

the major mode is not 304

Notify the operator that the (system) is in the wrong

major mode.

Recommend call to crew to select major mode 304 in
the (system).

(sub-phase init status)

(system-available _sys)
(major-mode ?sys 304)
=>

(assert (recommend three-state wrong-majormode

" wrong" " major mode in " ?sys

" ; Recommend crew call to select mm304")))

off-nominal alt

;f

;;

;;; GROUP String Commfaults

;;

;; This group notifies the operator when commfaults occur or clear up

;; on entire strings.

;;

;;; CONTROL FACTS

; (sub-phase string ?)

;;

;;; CONTAINING GROUP

;; Entry

;;

(defrule

;; IF

-_ ;;

;;

-- ;; THEN

;;

;; END

commfault-string-pass

A string is commfaulted in the PASS AND

The string was not previously commfaulted

Notify the operator that the string is commfaulted

(sub-phase string commfault)
m

6

(string-commfault pass ?string on)

?x <- (prev-string-cf pass ?string off)
=>

(retract ?x)

(assert (prev-string-cf pass ?string on))

(assert (event three-state off-nominal alt

"Commfault string " ?string " in the PASS")))

m

(de frule

-. ;; IF

;;

;;
;; THEN

;;

;; END

B

l m

commfault-string-bfs

A string is commfaulted in the BFS AND

The string was not previously commfaulted

Notify the operator that the string is commfaulted

(sub-phase string commfault)

(string-commfault bfs ?string on)

?x <- (prev-string-cf bfs ?string off)
->

(retract ?x)

(assert (prev-string-cf bfs ?string on))

(assert (event three-state off-nominal alt

"Commfault string " ?string " in the BFS")))

!

• w (defrule clear-string-pass

i

_ ;;

_- ;;
i
_ _ ;;..

_ _ ;;
;;

IF

THEN

END

A string is not commfaulted in the PASS AND

The string was previously commfaulted

Notify the operator that the commfault is clear

(sub-phase string clear)

(string-commfault pass ?string off)

?x <- (prev-string-cf pass ?string on)
=>

(retract ?x)

(assert (prev-string-cf pass ?string off))

(assert (event three-state off-nominal alt

"Commfault on string " ?string " has cleared in the PASS")))

(defrule clear-string-bfs

;;

;;

_ ;;
;;

;;

;;

IF

THEN

END

A string is not commfaulted in the BFS AND

The string was previously commfaulted

Notify the operator that the commfault is clear

(sub-phase string clear)

, 7

(string-commfault bfs ?string off)

?x <- (prev-string-cf bfs ?string on)
=>

(retract ?x)

(assert (prev-string-cf bfs ?string off))
(assert (event three-state off-nominal alt

"Commfault on string " ?string " has cleared in the BFS")))

8

3.2 Telemetry Status

r_

3 - 9

r f

f r

/;

i;

/;

;/

! !

Telemetry Status Rules (3.2)

No rules specified at this time pending further details

w

10

3.3 Runway Status

w

w

3 - Ii

r i

;;;
J;

J;
jj
;;

;J;

;;

;J

GROUP Landing Site Checks (3.3)

This group determines whether or not the correct runway is selected

in the onboard systems, and determines what action is needed when the

wrong runway is selected.

CONTROL FACTS

(sub-phase runway ?)

CONTAINING GROUP

Entry

(de,facts monitoring-runway-phases ; These facts define the runway

; sub-phases in the monitoring phase

(first-sub-phase runway monitoring check)

; There is only 1 sub-phase: "check"

)

(de,facts initial-runway-facts

(runway-status

(runway-status

(runway-status

pass unknown)

bfs unknown)

ground unknown)

; These facts represent assumptions

; about the runways before any data
; is received.

; Don't know if right rw in the pass

; Don't know if right rw in the bfs

; Don't know if right rw in the ground

(de,rule desired-runway-from-operator

, f

;;

;;

;;

;;

;;

;;

w

IF

THEN

END

The operator entered the desired runway slot
number

Conclude the desired runway has that slot
number

(sub-phase runway check)

?x <-(runway desired ?)

?y <-(operator-input runway ?slot)
=>

(retract ?x ?y)

(assert (runway desired ?slot)))

i _ (defrule

;;

;;

;;

;;

IF

onboard-runway-correct

For the available system

The selected runway in an onboard system is the same as

the desired runway AND

The runway status of that system was previously unknown or no-go

THEN

END

Conclude that the runway status of the onboard system is go
Notify the operator

(sub-phase runway check)
(system-available ?sys)
(runway desired ?slot)
(runway ?sys ?slot)
?x <- (runway-status ?sys
=>
(retract ?x)
(assert
(assert
(assert

N

go)

(runway-status ?sys go))

(status-light runway ?sys go))

(event site nominal alt

"The " ?sys " has the correct runway selected")))

(defrule onboard-runway-incorrect

;;

;;

-- ;;

;;

;;

;;

;;

;;

IF

THEN

END

For the available systems

The system runway (slot) is not the same as the

desired runway (slot)

Notify operator that the system has selected the

wrong runway.

Recommend call to crew to select proper runway.

(sub-phase runway check)

(system-available ?sys)

(runway desired ?desired-slot)
(runway ?sys ?actual-slot&-?desired-slot)

(same-area ?desired-slot ?actual-slot)

?x <- (runway-status ?sys ?status)
=>

(if (neq ?status no-go)
then

(retract ?x)

(assert (runway-status ?sys

(if (> ?actual-slot ?desired-slot)
then

(bind ?item 3)

(bind ?name "primary")
else

(bind ?item 4)

(bind ?name "secondary"))

(assert (status-light runway ?sys

(assert

no-go)))

no-go))

(recommend site ?sys off-nominal alt

"Need to select the " ?name " runway in the " ?sys

" by ITEM " ?item " on SPEC 50")))

l

(defrule onboard-area-incorrect

IF

For the available systems

m

THEN

END

The selected runway in an onboard system is different from

the desired runway AND

The selected runway is not in the same area as the

desired runway

Notify the operator that the correct area must be selected

(sub-phase runway check)

(system-available ?sys)

(runway desired ?desired-slot)

(runway ?sys ?actual-slot&~?desired-slot)

(not (same-area ?desired-slot ?actual-slot))

(same-area ?desired-slot ?other-slot)

?x <- (runway-status ?sys ?status)
=>

(if (neq ?status no-go)
then

(retract ?x)

(assert (runway-status ?sys

(assert (status-light runway ?sys

(if (> ?desired-slot ?other-slot)
then

no-go)))

no-go))

else

(bind ?area (/ ?desired-slot 2))

(assert (recommend site ?sys off-nominal alt

"Need to select runway " =(lookup-rw-name ?desired-slot)

" in the " ?sys " by ITEM 41 +" ?area

" followed by ITEM 4 on SPEC 50"))

(bind ?area (/ (+ ?desired-slot i) 2))

(assert (recommend site ?sys off-nominal alt

"Need to select runway " =(lookup-rw-name ?desired-slot)

" in the " ?sys " by ITEM 41 +" ?area

" on SPEC 50"))))

(defrule ground-runway-incorrect

;;

;;

;;

;;

_-;;

;;

;;

;;

IF

THEN

END

The GND runway (name) is not the same as the desired

runway (name)

Notify operator that the selected GND runway is
in error.

Recommend call to GDO to have trajectory change the

GND runway

(sub-phase runway check)

(runway desired ?desired-siot&~unknown)

(runway ground ?actual-slot& ?desired-slot)

?x <- (runway-status ground ?status)
->

(if (neq ?status no-go)
then

(retract ?x)

(assert (runway-status ground

(assert (status-light runway ground

(assert (recommend site ground

no-go)))

no-go))
off-nominal alt

]4

"GDO needs to select runway "

=(lookup-rw-name ?desired-slot))))

=

w

t "

15

3.4 Inertial Measurement

, =

m

I

m

m

u

I

m

D

3 - 16

i/7

;;

7;

7;

;;

;

;;

GROUP

Inertial Measurement Units (3.4)

This group watches the IMUs for failures and determines

the cause of those failures. This group also determines

which IMUs should be used at any given time.

CONTROL FACTS

(sub-phase imu ?)

CONTAINING GROUP

Entry

s!

w

m

w

n

;;; FACTS

(deffacts monitoring-imu-phases

(first-sub-phase imu monitoring

(next-sub-phase imu pass-availability

(next-sub-phase imu bfs-availability

(next-sub-phase imu error-detection

(next-sub-phase imu error-isolation

(next-sub-phase imu error-magnitude

; Defines the sequence of

; sub-phases in the monitoring

; phase of the IMU section.

pass-availability)

; The first sub-phase is

; PASS availability.

bfs-availability)

; After PASS availability comes

; BFS availability.

error-detection)

; After BFS availability comes

; error detection.

error-isolation)

; After error detection comes

; error isolation.

error-magnitude)

; After error isolation comes

; error magnitude determination.

failure-prediction)

; After error magnitude comes

; failure prediction.

; Failure prediction is the last

; IMU sub-phase in monitoring

; phase.

(deffacts analysis-imu-phases

(first-sub-phase imu

(next-sub-phase imu

; Defines sequence of sub-phase

; in the analysis phase of the

; IMU section.

analysis pass-recommendation)

; The first sub-phase is

; PASS recommendations.

pass-recommendation bfs-recommendation)

; After PASS recommendations

; comes BFS recommendations.

; BFS recommendations is the

; last IMU sub-phase in the

; analysis phase.

w

(deffacts initial-imu-facts ; These facts represent assumptions

17

w

w

T

m

rw

--)

"-i

- r;;

--t;

r ;
: =

(
(
(
(zmu-avail-output bfs 1 avail)

(zmu-avail-output bfs 2 avail)

(lmu-avail-output bfs 3 avail)

(good-imus 3)
(Drev-bfs-imu 0)

(is-imu-valid 1 vel valid)

(lS-lmu-valid 2 vel valid)

(ls-lmu-valid 3 vel valid)

(is-imu-valid 1 att valid)

(is-lmu-valid 2 att valid)

(is-imu-valid 3 att valid)

(is-imu-valid 1 acc invalid)

(is-imu-valid 2 acc invalid)

(is-imu-valid 3 acc invalid)

(imu-quality 1 good)

(imu-quality 2 good)

(imu-quality 3 good)

(imu-vel 1 under)

; about the IMUs before any data is
; received

imu-avail-output pass 1 avail) ; IMU 1 is available in the PASS

imu-avail-output pass 2 avail) ; IMU 2 is available in the PASS

imu-avail-output pass 3 avail) ; IMU 3 is available in the PASS

(imu-vel 2 under)

(imu-vel 3 under)

(imu-att 1 under)

(imu-att 2 under)

(imu-att 3 under)

(imu-acc 1 under)

(imu-acc 2 under)

(imu-acc 3 under)

(imu-rm-prediction none)

(initial-misalignment 1 unknown)

(initial-misalignment 2 unknown)

(initial-misalignment 3 unknown)

; IMU 1 is available in the BFS

; IMU 2 is available in the BFS

; IMU 3 is available in the BFS

There are three good IMUs

The BFS has been mid-value selecting

IMU 1 is produclng valid velocity data

IMU 2 is producing valid velocity data

IMU 3 is producing valid velocity data

IMU 1 is producing valid attitude data

IMU 2 is producing valid attitude data

IMU 3 is producing valid attitude data

IMU 1 is producing valid ACC data

IMU 2 Is producing valid ACC data

IMU 3 is produclng valid ACC data

IMU 1 has no problems

IMU 2 has no problems

IMU 3 has no problems

IMU 1 velocity compared to other IMUs
is within limits

IMU 2 velocity compared to other IMUs
is within limits

IMU 3 velocity compared to other IMUs
is within limits

, IMU 1 attitude compared to other IMUs
, is within limits

, IMU 2 attitude compared to other IMUs

, is within limits

, IMU 3 attitude compared to other IMUs

, is within limits

, IMU 1 ACC data compared to other I}[Us
is within limits

IMU 2 ACC data compared to other IMUs
is within limits

IMU 3 ACC data compared to other IMUs
is within limits

IMU RM is not predicted to fail any
current candidates.

The initial misalignment for IMU 1
is unknown

The initial misalignment for IMU 2
is unknown

The initial misalignment for IMU 3
is unknown

**

GROUP

PASS IMU Availability (3.4.1.1)

This group determines which IMUs are available in the PASS, and why
the unavailable ones are unavailable.

CONTROL FACTS

w

18

; (sub-phase imu pass-availability)

;;

;;; CONTAINING GROUP

;; Inertial Measurement Units

;;

(defrule imu-commfault-pass

w

;;

;;

;;

_ ;;

;;

;;

;;

;;

;;

j ; ;

IF

THEN

END

The PASS is engaged

An IMU was not previously commfaulted in the PASS

The commfault flag for that IMU is on in the PASS

AND

Notify operator that an IMU is commfaulted (unless the whole

string is commfaulted).
Conclude the IMU is unavailable to the PASS due to

a commfault.

Conclude no IMU RM prediction

(sub-phase imu pass-availability)

(engaged-system pass)

?x <- (imu-avail-output pass ?imu -commfault)

(imu-flag pass commfault ?imu on)

(string-commfault pass ?imu ?string-flag)

?y <- (imu-rm-prediction $?)
=>

(if (eq ?string-flag off)
then

(assert (event pass-imu off-nominal alt

"Commfault IMU " ?imu " in PASS")))

(retract ?x)

(assert (imu-avail-output pass ?imu commfault))

(retract ?y)

(assert (imu-rm-prediction none)))

/

-- (defrule imu-comf-clear-pass-i

u

;; IF

;;

;;

;;

;;

--- ;; THEN

;;

;;

;;

;;

;;

;; END

The PASS is engaged

An IMU has been unavailable to the PASS due to commfault

The commfault flag for that IMU is off in the PASS

The fail flag or deselect flag for that IMU is on in the PASS

Notify operator that the commfault has cleared

(unless it was a string commfault)
Conclude the IMU is unavailable to the PASS due to failure

or deselect, whichever flag is on

Conclude no IMU RM prediction

we--

w

(sub-phase imu pass-availability)

(engaged-system pass)

?x <- (imu-avail-output pass ?imu commfault)

(imu-flag pass commfault ?imu off)

(imu-flag pass ?flag&failldeselect ?imu on)

(prev-string-cf pass ?imu ?string-flag)

?y <- (imu-rm-prediction $?)
=>
(if (eq ?string-flag off)

then
(assert (event pass-imu off-nominal alt

"Commfault clear on IMU " ?imu " in PASS")))
(retract ?x)
(assert (imu-avail-output pass ?imu ?flag))
(retract ?y)
(assert (imu-rm-prediction none)))

-(defrule imu-comf-clear-pass-2

;; IF
;;

;;

w ;;

;; THEN

;;

;;

;;

;;
;; END

T

The PASS is engaged
An IMU has been unavailable to the PASS due to commfault

The commfault flag for that IMU is off in the PASS

The fail flag for that IMU is off in the PASS

The deselect flag for that IMU is off in the PASS

Notify operator that the commfault has cleared

(unless it was a string commfault)
Conclude the IMU is now available to the PASS

Conclude no IMU RM prediction

(sub-phase imu pass-availability)

(engaged-system pass)

?x <- (imu-avail-output pass ?imu commfault)

(imu-flag pass commfault ?imu off)

(imu-flag pass fail ?imu off)

(imu-flag pass deselect ?imu off)

(prev-string-cf pass ?imu ?string-flag)

?y <- (imu-rm-prediction $?)
=>

(if (eq ?string-flag off)
then

(assert (event pass-imu off-nominal alt

"Commfault clear on IMU " ?imu " in PASS")))

(retract ?x)

(assert (imu-avail-output pass ?imu avail))

(retract ?y)

(assert (imu-rm-prediction none)))

(defrule imu-failed-pass

; ; IF

_;;
;;

;;

;;

_;;

;;

rl

THEN

The PASS is engaged
An IMU has been available to the PASS

The fail flag for that IMU is on in the PASS

Notify operator of IMU failure

Conclude the IMU is unavailable to the PASS due to failure

Conclude no IMU RM prediction

2O

;/ END

r_

(sub-phase imu pass-availability)

(engaged-system pass)

?x <- (imu-avail-output pass ?imu avail)

(imu-flag pass fail ?imu on)

?y <- (imu-rm-prediction $?)
=>

(assert (event pass-imu off-nominal alt "RM failed IMU " ?imu))

(retract ?x)

(assert (imu-avail-output pass ?imu fail))

(retract ?y)

(assert (imu-rm-prediction none)))

(defrule imu-deselected-pass

;;

;;

;;

; I

;;

;;

w ;;
;;

IF

THEN

END

The PASS is engaged
An IMU has been available to the PASS

The deselect flag for that IMU is on in the PASS

Notify operator of crew deselection
Conclude the IMU is unavailable to the PASS due to deselect

Conclude no IMU RM prediction

(sub-phase imu pass-availability)

(engaged-system pass)

?x <- (imu-avail-output pass ?imu avail)

(imu-flag pass deselect ?imu on)

?y <- (imu-rm-prediction $?)
=>

(assert (event pass-imu off-nominal alt "Crew deselected IMU " ?imu))

(retract ?x)

(assert (imu-avail-output pass ?imu deselect))

(retract ?y)

(assert (imu-rm-prediction none)))

(defrule imu-reselected-pass

-- ;; IF

;;

_ ;;

;;

;;

;; THEN

;;

-- ;;

;;

;; END

The PASS is engaged
An IMU has been unavailable to the PASS due to failure

or deselect

The fail flag for that IMU is off in the PASS

The deselect flag for that IMU is off in the PASS

Notify operator of crew reselection.
Conclude the IMU is now available to the PASS.

Conclude no IMU RM prediction

(sub-phase imu pass-availability)

(engaged-system pass)

°1°k

?x <- (imu-avail-output pass ?imu failldeselect)

(imu-flag pass fail ?imu off)

(imu-flag pass deselect ?imu off)

?y <- (imu-rm-prediction $?)
_>

(assert (event pass-imu off-nominal alt "Crew reselected IMU " ?imu))
(retract ?x)

(assert (imu-avail-output pass ?imu avail))

(retract ?y)

(assert (imu-rm-prediction none)))

defrule three-good-imus

IF

THEN

END

The PASS is engaged
All 3 IMUs are not commfaulted in the PASS

All 3 IMUs are good

Conclude that there are 3 good IMUs in the PASS

(sub-phase imu pass-availability)

(engaged-system pass)
?x <- (good-imus 3)

(imu-avail-output pass

(imu-avail-output pass

(imu-avail-output pass

(Imu-quality 1 good)

(imu-quality 2 good)

(imu-quality 3 good)
=>

(retract ?x)

(assert (good-imus 3)))

1 :commfault)

2 commfault)
3 commfault)

(defrule two-good-imus

;;

;;

--;;

;;

;;

;;

_;;

;;

IF

THEN

END

The PASS is engaged
IMU A is not commfaulted in the PASS

IMU A is good

IMU B is not commfaulted in the PASS

IMU B is good

IMU C is commfaulted in the PASS or suspect

Conclude we have 2 good IMUs in the PASS

(sub-phase imu pass-availability)

(engaged-system pass)
?x <- (good-imus 2)

(imu-avail-output pass ?imu-a -commfault)

(imu-quality ?imu-a good)

(imu-avail-output pass ?imu-b&-?imu-a ~commfault)

(imu-quality ?imu-b good)

(or (imu-avail-out_ut pass -?imu-a&~?imu-b
(imu-quality ?imu-a&-?imu-b ~good))

=>
(retract ?x)
(assert (good-imus 2)))

commfault)

v

(defrule one-good-imu

;;

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged

IMU A is not commfaulted in the PASS

IMU A is good

IMU B is commfaulted in the PASS or suspect

IMU C is commfaulted in the PASS or suspect

Conclude we have 1 good IMU in the PASS

(sub-phase imu pass-availability)

(engaged-system pass)
?x <- (good-imus i)

(imu-avail-output pass ?imu-a ~commfault)

(imu-quality ?imu-a good)

(or (imu-avail-output pass ?imu-b&~?imu-a

(imu-quality ?imu-b& ?imu-a ~good))

(or (imu-avail-out_ut pass -?imu-a& ?imu-b

(imu-quality ?imu-a& ?imu-b good))
=>

(retract ?x)

(assert (good-imus i)))

commfault)

commfault)

"- (defrule no-good-imus

;; IF

;;
,;

;; THEN

;;

l!

;; END

The PASS is engaged

All 3 IMUs are commfaulted in the PASS or suspect

Conclude we have no good IMUs in the PASS

Notify operator of no good IMU's in the PASS

imu pass-availability)(sub-phase

(engaged-system pass)

?x <- (good-imus 0)

(or (imu-avail-output pass

(imu-quality 1 good))

(lmu-avail-output~ pass

(imu-quality 2 good))

(imu-avail-output pass

(Imu-quality 3 good))

0))

(or

(or

=>

(retract ?x)

(assert (good-imus

(assert

1 commfault)

2 commfault)

3 commfault)

(event pass-imu off-nominal alt

=

w

23

"WARNING -- WE HAVE NO GOOD IMUS IN THE PASS")))

=.4; ;

_-;;; GROUP

BFS IMU Availability (3.4.1.2)

This group determines which IMUs are available in the BFS. It also

determines why the unavailable IMUs are unavailable.

CONTROL FACTS

(sub-phase imu bfs-availability)

CONTAINING GROUP

Inertial Measurement Units

_(defrule imu-commfault-bfs

t r

;;

;;

;;

;;

;;

IF

THEN

END

The BFS is available

An IMU was not previously commfaulted in the BFS

The commfault flag for that IMU is on in the BFS

Notify operator of IMU commfault (unless the whole string

is commfaulted).

Conclude the IMU is not available to the BFS due to commfault.

(sub-phase imu bfs-availability)

(system-available bfs)

?x <- (imu-avail-output bfs ?imu -commfault)

(imu-flag bfs commfault ?imu on)

(string-commfault bfs ?imu ?string-flag)
->

(if (eq ?string-flag off)
then

(assert (event bfs-imu off-nominal alt

"Commfault IMU " ?imu " in the BFS")))

(retract ?x)

(assert (imu-avail-output bfs ?imu commfault)))

f

_(defrule imu-comf-clear-bfs-not-engaged

_; ;

;;

_;;

_; ;

;;

;;

,;

;;

IF

THEN

The BFS is available

The BFS is engaged
An IMU was unavailable to the BFS due to commfault

The commfault flag for that IMU is off in the BFS

Notify operator that commfault has been cleared (unless the

whole string was commfaulted).

Conclude the IMU is available to the BFS (if the fail flag is

off) or unavailable due to failure (if the fail flag

is on).

24

// END

(sub-phase imu bfs-availability)

(system-available bfs)
(engaged-system bfs)

?x <- (imu-avail-output bfs ?imu commfault)

(imu-flag bfs commfault ?imu off)

(imu-flag bfs fail ?imu ?fail-flag)

(prev-string-cf bfs ?imu ?string-flag)
=>

(if (eq ?string-flag off)
then

(assert (event bfs-imu off-nominal alt

"Commfault on IMU " ?imu " cleared in BFS")))
(retract ?x)

(if (eq ?fail-flag off)
then

(assert (imu-avail-output bfs ?imu avail))
else

(assert (imu-avail-output bfs ?imu fail))))

(defrule imu-comf-clear-bfs-engaged-partl

;;

;;

;;

;;

_- ;;

;;

;;

;;

;;

;;

IF

THEN

The BFS is engaged

An IMU has been unavailable to the BFS due to commfault

The commfault flag for that IMU is off in the BFS

The fail flag or deselect flag for that IMU is

on in the BFS

Notify operator that the commfault has cleared

(unless it was a string commfault)
Conclude the IMU is unavailable to the BFS due to

failure or deselect, whichever flag is on

(sub-phase imu bfs-availability)

(engaged-system bfs)

?x <- (imu-avail-output bfs ?imu commfault)

(imu-flag bfs commfault ?imu off)

(imu-flag bfs ?flag&failldeselect ?imu on)

(prev-string-cf bfs ?imu ?string-flag)
=>

(if (eq ?string-flag off)
then

(assert (event bfs-imu off-nominal alt

"Commfault on IMU " ?imu " cleared in BFS")))

(retract ?x)

(if (eq ?flag fail)

then (assert (imu-avail-output bfs ?imu fail))

else (assert (imu-avail-output bfs ?imu deselect))))

__ (defrule imu-comf-clear-bfs-engaged-part2

;; IF

;; The BFS is engaged

2 5

THEN

An IMU has been unavailable to the BFS due to commfault

The commfault flag for that IMU is off in the BFS

The fail flag for that IMU is off in the BFS

The deselect flag for that IMU is off in the BFS

Notify the operator that the commfault has cleared

(unless it was a string commfault)
Conclude the IMU is now available to the BFS

(sub-phase imu bfs availability)

(engaged-system bfs)

?x <- (imu-avail-output bfs ?imu commfault)

(imu-flag bfs commfault ?imu off)

(imu-flag bfs fail ?imu off)

(imu-flag bfs deselect ?imu off)

(prev-string-cf bfs ?imu ?string-flag)
=>

(if (eq ?string-flag off)

then (assert (event bfs-imu off-nominal alt

"Commfault on IMU " ?imu " cleared in BFS")))

(retract ?x)

(assert (imu-avail-output bfs ?imu avail)))

--- (defrule imu-failed-bfs

;; IF

;;

;;

;;

;; THEN

;;

;;

;; END

BFS is available

An IMU was available to the BFS

The fail flag for that IMU is on in the BFS

Notify operator of IMU failure in the BFS

Conclude the IMU is unavailable to the BFS due to failure

(sub-phase imu bfs-availability)

(system-available bfs)

?x <- (imu-avail-output bfs ?imu avail)

(imu-flag bfs fail ?imu on)
=>

(assert (event bfs-imu off-nominal alt "IMU " ?imu " failed in BFS"))

(retract ?x)

(assert (imu-avail-output bfs ?imu fail)))

-- (defrule imu-deselected-bfs-l-not-engaged

;;

;;

;;

;;

--;;

;;

IF

THEN

The BFS is not engaged
The BFS is available

The BFS was mid-value-selecting IMUs

All IMU commfault flags are off in the BFS

All IMU fail flags are off in the BFS

The BFS is prime selecting an IMU

Notify operator that BFS has changed IMU status due to
a crew action.

w 26

Notify the operator that BFS is now prime selecting an
IMU

END

(sub-phase imu bfs-availability)

(engaged-system -bfs)

(system-available bfs)

?x <- (prev-bfs-imu 0)
(bfs-imu ?new-imu& 0)

(imu-flag bfs commfault 1 off)

(imu-flag bfs commfault 2 off)

(imu-flag bfs commfault 3 off)

(imu-flag bfs fail 1 off)

(imu-flag bfs fail 2 off)

(imu-flag bfs fail 3 off)
=>

(assert (event bfs-imu off-nominal alt

"Crew deslected an IMU in the BFS"))

(assert (event bfs-imu off-nominal alt "BFS is now on IMU " ?new-imu))

(retract ?x)

(assert (prev-bfs-imu ?new-imu)))

I

(defrule imu-deselected-bfs-2-not-engaged

v i;
;;

;;

-- i;

I t

;;

;;

;;

;;

;;

;;

-_ ;;

IF

THEN

END

The BFS is available

The BFS is not engaged

The BFS was prime selecting an IMU

The commfault flag for that IMU is off in the BFS

The fail flag for that IMU is off in the BFS

The BFS is now prime selecting a different IMU

Notify operator the formerly selected IMU has been deselected.

Notify operator that BFS is now prime selecting a different
IMU

m

m

(sub-phase imu bfs-availability)

(engaged-system bfs)

(system-available bfs)

?x <- (prev-bfs-imu ?imu&-0)

(bfs-imu ?new-imu&~?imu)

(imu-flag bfs commfault ?imu off)

(imu-flag bfs fail ?imu off)
=>

(assert (event bfs-imu off-nominal alt

"Crew deselected IMU " ?imu " in the BFS"))

(assert (event bfs-imu off-nominal alt "BFS is now on IMU " ?new-imu))

(retract ?x)

(assert (prev-bfs-imu ?new-imu)))

(defrule imu-deselected-bfs-engaged

;; IF

;; The BFS is available

27

;;

//
;/

;/

;/

THEN

The BFS is engaged
An IMU has been available to the BFS

The deselect flag for that IMU is on in the BFS

Notify operator of crew deselection in the BFS
Conclude the IMU is unavailable to the BFS

due to deselection

(sub-phase imu bfs-availability)

(system-available bfs)

(engaged-system bfs)

?x <- (imu-avail-output bfs ?imu avail)

(imu-flag bfs deselect ?imu on)
=>

(assert (event bfs-imu off-nominal alt

"Crew deselected IMU " ?imu " in the BFS"))

(retract ?x)

(assert (imu-avail-output bfs ?imu deselect)))

w

defrule imu-reselect-bfs-engaged

IF

THEN

The BFS is engaged

An IMU has been unavailable to the BFS due to

failure or deselect

The fail flag for that IMU is off in the BFS

The deselect flag for that IMU is off in the BFS

Notify operator of crew reselection
Conclude the IMU is now available to the BFS

(sub-phase imu bfs-availability)

(engaged-system bfs)

?x <- (imu-avail-output bfs ?imu failldeselect)

(imu-flag bfs fail ?imu off)

(imu-flag bfs deselect ?imu off)
=>

(assert (event bfs-imu off-nominal alt

"Crew reselected IMU " ?imu " in the BFS"))

(retract ?x)

(assert (imu-avail-output bfs ?imu avail)))

_(defrule imu-change-bfs

! l

_;;

;;

;;

;;

IF

THEN

END

The BFS is available

The fail flag or commfault flag for an IMU is on in the BFS

That IMU was the prime selected IMU or the BFS was

mid-value selecting

Notify operator of a change in BFS IMU status due to
commfault or failure.

(sub-phase imu bfs-availability)

(system-available bfs)
?x <- (prev-bfs-imu ?imu-a)
(bfs-imu ?new-imu&-?imu-a)
(imu-flag bfs commfaultlfail ?imu-b on)
(test (I] (= ?imu-a 0)

(= ?imu-a ?imu-b)))
=>
(assert (event bfs-imu off-nominal alt "BFS is now on IMU " ?new-imu))
(retract ?x)
(assert (prev-bfs-imu ?new-imu)))

;;

;;; GROUP

;; Error Detection (3.4.2.1)

;; This group determines when an IMU error exists.

;;

;;; CONTROL FACTS

-- ; (sub-phase imu error-detection)

;;
v ;;; CONTAINING GROUP

;; Inertial Measurement Units

;;

(defrule valid-velocity

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged
An IMU is not commfaulted

That IMU is good or is suspect due to drift

Conclude that velocity comparisons with that IMU are valid.

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (is-imu-valid ?imu vel invalid)

(imu-avail-output pass ?imu commfault)
(imu-quality ?imu good drift)
=>

(retract ?x)

(assert (is-imu-valid ?imu vel valid)))

(defrule invalid-velocity

;;

;;

_ ;;
;;

;;

;;

IF

THEN

END

The PASS is engaged

An IMU is commfaulted or is suspect due to anything but drift

Conclude that velocity comparisons with that IMU are invalid.

(sub-phase imu error-detection)

2[)

(engaged-system pass)

?x <- (is-imu-valid ?imu vel valid)

(or (imu-avail-output pass ?imu commfault)
(imu-quality ?imu -good&-drift))

=>

(retract ?x)

(assert (is-imu-valid ?imu vel invalid)))

(defrule valid-attitude

;;

_;;

w

IF

THEN

END

The PASS is engaged
An IMU is not commfaulted

That IMU is good or is suspect due to accelerometer bias

Conclude that attitude comparisons with that IMU are valid.

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (is-imu-valid ?imu art invalid)

(imu-avail-output pass ?imu commfault)

(imu-quality ?imu goodlbias)
=>

(retract ?x)

(assert (is-imu-valid ?imu art valid)))

_(defrule invalid-attitude

;;
;;

_;;
;;

;;

_;;

IF

THEN

END

The PASS is engaged

An IMU is commfaulted or is suspect due to anything but bias

Conclude that attitude comparisons with that IMU are invalid.

w

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (is-imu-valid ?imu att valid)

(or (imu-avail-output pass ?imu commfault)

(imu-quality ?imu -good&-bias))
=>

(retract ?x)

(assert (is-imu-valid ?imu att invalid)))

_(defrule valid-to-use-acc-comparison

;; IF

_;; The PASS is engaged
--;; The ACC delta-t > 30 seconds

;; THEN

3O

_>

Valid to use ACC comparison

(sub-phase imu error-detection)

(engaged-system pass)

(acc-delta-time ?t&:(> ?t 30.0))

?xl <- (is-imu-valid 1 acc invalid)

?x2 <- (is-imu-valid 2 acc invalid)

?x3 <- (is-imu-valid 3 acc invalid)

(retract ?xl ?x2 ?x3)

(assert (is-imu-valid 1 acc valid))

(assert (is-imu-valid 2 acc valid))

(assert (is-imu-valid 3 acc valid)))

(defrule valid-acc

; ; IF

;;

;;

;;

;;

--- ;;

THEN

END

The PASS is engaged
An IMU is not commfaulted

That IMU is good or is suspect due to resolver

Conclude that ACC comparisons with that IMU are valid.

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (is-imu-valid ?imu acc invalid)

(imu-avail-output pass ?imu commfault)

(imu-quality ?imu goodlresolver)
=>

(retract ?x)

(assert (is-imu-valid ?imu acc valid)))

(defrule invalid-acc

IF

THEN

END

The PASS is engaged

An IMU is commfaulted or is suspect due to anything but resolver

Conclude that ACC comparisons with that IMU are invalid.

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (is-imu-valid ?imu acc valid)

(or (imu-avail-output pass ?imu commfault)

(imu-quality ?imu -good&~resolver))
=>

(retract ?x)

(assert (is-imu-valid ?imu acc invalid)))

;;

_- ;; ERROR DETECTION - Velocity Comparisons

31

_ (defrule velocity-comparison-i

;;

v ;;

;;

;;

;;

;;

/;

;;

;;

IF

THEN

END

The PASS is engaged
IMU A is not commfaulted

IMU B velocity is valid

Velocity comparison A-B is different from IMU A's earlier

velocity comparison status

IMU C velocity is invalid

Change IMU A's velocity comparison status to current A-B

comparison status.

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (imu-vel ?imu-a ?status)

(imu-avail-output pass ?imu-a

(Irus-in-pair

(is-imu-valid

(rel-imu-comp

(irus-in-pair
(is-imu-valid
=>

(retract ?x)

(assert

-commfault)

?pair-i ?imu-a ?imu-b)

?imu-b vel valid)

?pair-i vel ?status-l&-?status)

?pair-2&-?pair-I ?imu-a ?imu-c)

?imu-c vel invalid)

(imu-vel ?imu-a ?status-l)))

(defrule velocity-comparison-2

;

;

;

-- ;

IF

THEN

END

The PASS is engaged
IMU A is not commfaulted

IMU B velocity is valid

Velocity comparison A-B is some status (call it status-l)

IMU C velocity is valid

Velocity comparison A-C is some status (call it status-2)

The smaller of status-I and status-2 is different from

IMU A's earlier velocity comparison status

Change IMU A's velocity comparison status to the smaller
of status-i and status-2.

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (imu-vel ?imu-a ?status)

(imu-avail-output pass ?imu-a

(irus-in-pair

(is-imu-valid

(rel-imu-comp

(irus-in-pair

(is-imu-valid

(rel-imu-comp

-commfault)

(min-miscompare
=>

(retract ?x)

?pair-i ?imu-a ?imu-b)

?imu-b vel valid)

?pair-i vel ?status-l)

?pair-2&-?pair-i ?imu-a

?imu-c vel valid)

?pair-2 vel

?status-i

?imu-c)

?status-2)

?status-2 ?new-status& ?status)

(assert (imu-vel ?imu-a ?new-status)))

;!

;;

;; ERROR DETECTION - Attitude Comparisons

;;

(defrule attitude-comparison-1

;;

; l

;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged
IMU A is not commfaulted

IMU B attitude is valid

Attitude comparison A-B is different from IMU A's earlier

attitude comparison status
IMU C attitude is invalid

Change IMU A's attitude comparison status to current A-B

comparison status.

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (imu-att ?imu-a ?status)

(imu-avail-output pass ?imu-a -commfault)

(lrus-in-pair

(is-imu-valid

(rel-imu-comp

(lrus-in-pair

(is-imu-valid
=>

(retract ?x)

(assert

?pair-i ?imu-a ?imu-b)

?imu-b att valid)

?pair-i att ?status-l&-?status)

?pair-2&~?pair-i ?imu-a ?imu-c)

?imu-c att _nvalid)

(imu-att ?imu-a ?status-l)))

(defrule attitude-comparison-2

;;

;;

;;

;;

;;

;;

v ;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged
IMU A is not commfaulted

IMU B attitude is valid

Attitude comparison A-B is some status (call it status-l)
IMU C attitude is valid

Attitude comparison A-C is some status (call it status-2)
The smaller of status-i and status-2 is different from

IMU A's earlier attitude comparison status

Change IMU A's attitude comparison status to the smaller of
status-i and status-2

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (imu-att ?imu-a ?status)

(imu-avail-output pass ?imu-a -commfault)

(irus-in-pair ?pair-i ?imu-a ?imu-b)

(is-imu-valid ?imu-b att valid)

3<{

(rel-imu-comp ?pair-i att ?status-l)

(Irus-in-pair ?pair-2&-?pair-i ?imu-a ?imu-c)

(is-imu-valid ?imu-c att valid)

(rel-imu-comp ?pair-2 att ?status-2)

(min-miscompare ?status-i ?status-2 ?new-status&-?status)
=>

(retract ?x)

(assert (imu-att ?imu-a ?new-status)))

/f

;; ERROR DETECTION - ACC Comparisons

(defrule acc-comparison-i

;;

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged
IMU A is not commfaulted

IMU B ACC is valid

Worst axis ACC comparison A-B is different from IMU A's

earlier ACC comparison status
IMU C ACC is invalid

Change IMU A's ACC comparison status to current A-B

comparison status.

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (imu-acc ?imu-a ?status)

(imu-avail-output pass ?imu-a Ncommfault)

(irus-in-pair ?pair-i ?imu-a ?imu-b)

(is-imu-valid ?imu-b acc valid)

(rel-imu-acc ?pair-I worst-axis ?status-l&-?status)

(irus-in-pair ?pair-2&N?pair-I ?imu-a ?imu-c)

(is-imu-valid ?imu-c acc invalid)
_>

(retract ?x)

(assert (imu-acc ?imu-a ?status-l)))

y

;,

;,

w ;r

;,

;,

(defrule acc-comparison-2

IF

THEN

The PASS is engaged
IMU A is not commfaulted

IMU B ACC is valid

Worst axis ACC comparison A-B is some status (call it

status-l)

IMU C ACC is valid

Worst axis ACC comparison A-C is some status (call it

status-2)
The smaller of status-i and status-2 is different from

IMU A's earlier ACC comparison status

Change IMU A's ACC comparison status to the smaller of status-i

34

;; and status-2

;; END

(lrus-in-pair

(is-imu-valid

(rel-imu-acc

(Irus-in-pair

(is-imu-valid

(rel-imu-acc

(sub-phase imu error-detection)

(engaged-system pass)

?x <- (imu-acc ?imu-a ?status)

(imu-avail-output pass ?imu-a -commfault)

?pair-I ?imu-a ?imu-b)

?imu-b acc valid)

?pair-i worst-axis ?status-l)

?pair-2&-?pair-I ?imu-a ?imu-c)

?imu-c acc valid)

?pair-2 worst-axis ?status-2)

(min-miscompare ?status-i
=>

(retract ?x)

(assert (imu-acc ?imu-a ?new-status)))

?status-2 ?new-status& ?status)

!w

(defrule worst-comparison

;;

;;

T !

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged

Exactly 2 good IMUs are available

Those 2 IMUs disagree in any way

Conclude that 2-level isolation must be used to determine

which of the 2 IMUs has a problem

w

(sub-phase imu error-detection)

(engaged-system pass)

(good-imus 2)

(imu-avail-output pass ?imu-a -commfau!t)
(imu-avail-output pass ?imu-b& ?imu-a commfault)

(irus-in-pair ?pair ?imu-a ?imu-b)

(imu-quality ?imu-a good)

(imu-quality ?imu-b good)

(rel-imu-comp ?pair vel ?sl)

(rel-imu-comp ?pair att ?s2)

(max-miscompare ?sl ?s2 ?s3)

(rel-imu-acc ?pair worst-axis ?s4)
(max-miscompare ?s3 ?s4 -under)
=>

(assert (isolate ?pair)))

;;

;;;

;;

;;

;;

;;

;;;

;

;;

GROUP

Error Isolation (3.4.2.2)

When an IMU error has been detected, this group determines which IMU

has the problem, and what the problem is.

CONTROL FACTS

(sub-phase IMU error-isolation)

;;; CONTAININGGROUP
;; Inertial Measurement Units
;;

;;99999*9*999*W*9999999999*W*99999999*999999***9*9*999*99999***99*99**99**99

;; ERROR ISOLATION - 3 level

;;

-- (defrule three-level-component-isolation

;;

_ ;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged

There are 3 good IMUs

An IMU disagrees with the other 2 IMUs

Use the fault matrix to determine the problem with the IMU

Notify operator of an IMU problem

(sub-phase imu error-isolation)

(engaged-system pass)

(good-imus 3)

(imu-vel ?imu ?vel)

(imu-att ?imu ?att)

(imu-acc ?imu ?acc)

(fault-matrix ?vel ?att

?x <- (imu-quality ?imu
=>

(if (eq ?fault suspect)
then

(assert

?acc ?fault)

?fault)

(event pass-imu off-nominal alt

"IMU " ?imu " has an undiagnosable problem"))
else

(if (eq ?fault good)
then

(assert

(retract ?x)

(assert

else

(assert

(event pass-imu off-nominal alt

"IMU " ?imu " is good"))

(event pass-imu off-nominal alt

"IMU " ?imu " has a " ?fault " error"))))

(imu-quality ?imu ?fault)))

;;
;; ERROR ISOLATION - 2 level

;;

(defrule two-level-gnd-comparison

;;

;;

;;

;;

;;

;;

;;

;;

IF

The PASS is engaged

HSTD is good
An error between IMUs A and B has been detected at the 2

level

Worst axis GND-IMUA comparison is some status (call it

status-a)

Worst axis GND-IMUB comparison is some status (call it

;;
;;

J;
;;
;;

THEN

END

status-b)

GND-IMU comparison has not yet voted

When status-a = status-b, vote 0 for both IMUs.

Otherwise, vote 1 for the IMU with the larger difference, and
0 for the other IMU.

(sub-phase

(engaged-system pass)

(hstd good)

(isolate ?pair)

(irus-in-pair ?pair ?imu-a

(gnd-imu ?imu-a worst-axis

(gnd-imu ?imu-b worst-axis

(not (imu-vote gnd $?))
=>

(bind ?vote-a 0)

(bind ?vote-b 0)

(if (neq ?status-a
then

(assert

(assert

imu error-isolation)

?imu-b)

?status-a)

?status-b)

?status-b)

(if (neq ?status-a under)
then

(bind ?vote-a I)
else

(bind ?vote-b i)))

(imu-vote gnd ?vote-a ?imu-a))

(imu-vote gnd ?vote-b ?imu-b)))

(defrule two-level-gnd-cant-vote

;;

;;

;;

;;

;;

;;

;;

w

IF

THEN

END

The PASS is engaged
An error between IMUs A and B has been detected at the 2

level

The HSTD is not good

GND-IMU comparison has not voted yet

Vote 0 for IMUs A and B

(sub-phase imu error-isolation)

(engaged-system pass)

(isolate ?pair)

(irus-in-pair ?pair ?imu-a ?imu-b)

(hstd good)

(not (imu-vote gnd $?))
=>

(assert (imu-vote gnd 0 ?imu-a))

(assert (imu-vote gnd 0 ?imu-b)))

(defrule two-level-state-comparison

;; IF

37

;;

/;

;;

/;

--=

m

THEN

END

The PASS is engaged

The HSTD is good
3-state nay is active

An error between IMUs A and B has been detected at the 2

level

Worst axis GND-state-A comparison is some status

(call it status-a)

Worst axis GND-state-B comparison is some status

(call it status-b)

GND-state comparison has not voted yet

When status-a = status-b, vote 0 for both IMUs.

Otherwise, vote 2 for the IMU with the larger difference, and
0 for the other IMU.

(sub-phase imu error-isolation)

(engaged-system pass)

(hstd good)

(nav-3-state on)

(isolate ?pair)

(Irus-in-pair ?pair ?imu-a ?imu-b)

(gnd-3state ?imu-a worst-axis ?status-a)

(gnd-3state ?imu-b worst-axis ?status-b)

(not (imu-vote state $?))
=>

(bind ?vote-a 0)

(bind ?vote-b 0)

(if (neq ?status-a ?status-b)
then

(if (neq ?status-a under)
then

(bind ?vote-a 2)
else

(bind ?vote-b 2)))

(assert (imu-vote state ?vote-a ?imu-a))

(assert (imu-vote state ?vote-b ?imu-b)))

-- (defrule two-level-state-cant-vote

" ;; IF

;;

;;

;;

;;

;; THEN

;;

-- ;; END

The PASS is engaged
An error between IMUs A and B has been detected at the 2

level

The HSTD is not good OR 3-state nay is inactive

GND-state comparison has not voted yet

Vote 0 for IMUs A and B

(sub-phase imu error-isolation)

(engaged-system pass)

(isolate ?pair)

(irus-in-pair ?pair ?imu-a ?imu-b)

(or (hstd good)

(nav-3-state off))

(not (imu-vote state $?))

38

=>

(assert (imu-vote state

(assert (imu-vote state

0 ?imu-a))

0 ?imu-b)))

I
w

(defrule two-level-acc-comparison

;;

;;

;;

;;

;;

;;

;;

;;

. ;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged
An error between IMUs A and B has been detected at the 2

level

IMU A is the reference for ACC comparisons

X-axis ACC comparions A-B is some status (call it status-x)

Y-axis ACC comparions A-B is some status (call it status-y)

Z-axis ACC comparions A-B is some status (call it status-z)

ACC comparison has not voted yet

If status-x, status-y, and status-z indicate the error lies

in the x-y plane or z-axis of IMU A, vote 1 for

IMU A; otherwise, vote 0 for IMU A.

Vote 0 for IMU B.

w

m

m

(sub-phase imu error-isolation)

(engaged-system pass)

(isolate ?pair)

(irus-in-pair ?pair ?imu-a ?imu-b)

(ref-imu-acc ?imu-a)

(rel-imu-acc ?pair

(rel-imu-acc ?pair

(rel-imu-acc ?pair

(not (imu-vote acc
=>

(bind ?vote-a 0)

x ?status-x)

y ?status-y)

z ?status-z)

$7))

(if (neq (II (neq ?status-x under) (neq

(neq ?status-z under))
then

(bind ?vote-a i))

(assert (imu-vote acc ?vote-a ?imu-a))

(assert (imu-vote acc 0 ?imu-b)))

?status-y under))

AND

AN[)

A:',D

(defrule two-level-acc-cant-vote

;;

;;

;;

_ ;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged
An error between IMUs A and B has been detected at the 2

level

Neither A nor B is the ACC reference IMU

Acc comparison has not voted yet

Vote 0 for both IMUs A and B.

(sub-phase imu error-isolation)

(engaged-system pass)

w

r

3',)

- (isolate ?pair)

(excluded-lru ?pair ?imu-c)

-- (ref-imu-acc ?imu-c)

(irus-in-pair ?pair ?imu-a ?imu-b)

(not (imu-vote acc $?))
=>

(assert (imu-vote acc 0 ?imu-a))

(assert (imu-vote acc 0 ?imu-b)))

L__

(defrule partial-imu-velocity

2;

;;

f !

;;
_ • 0

! f

w ;;
;;

IF

THEN

END

The PASS is engaged
An error between IMUs A and B has been detected at the 2

level

IMU C velocity is valid

IMU A's velocity comparisons with IMUs B and C is some

status (call it status-a)

IMU B's velocity comparisons with IMUs A and C is some

status (call it status-b)

Partial IMU velocity comparison has not voted yet

When status-a = status-b, vote 0 for both IMUs A and B.

Otherwise, vote 1 for the IMU with the larger difference, and
0 for the other IMU.

m

(sub-phase imu error-isolation)

(engaged-system pass)

(isolate ?pair)

(excluded-lru ?pair ?imu-c)

(is-imu-valid ?imu-c vel valid)

(lrus-in-pair ?pair ?imu-a ?imu-b)

(imu-vel ?imu-a ?status-a)

(imu-vel ?imu-b ?status-b)

(not (imu-vote partial-imu-vel $?))
=>

(bind ?vote-a 0)

(bind ?vote-b 0)

(if (neq ?status-a ?status-b)
then

(if (neq ?status-a under)
then

(bind ?vote-a i)
else

(assert

(assert

(bind ?vote-b i)))

(imu-vote partial-imu-vel

(imu-vote partial-imu-vel

?vote-a

?vote-b

?imu-a))

?imu-b)))

(defrule partial-imu-attitude

;;

--;;

;;

IF

The PASS is engaged
An error between IMUs A and B has been detected at the 2

4O

;;

;;
;;
;;
;;

;;
;;

;;
;;

r !

;;

;;

THEN

END

level

IMU C attitude is valid

IMU A's attitude comparisons with IMUs B and C is some

status (call it status-a)

IMU B's attitude comparisons with IMUs A and C is some

status (call it status-b)

Partial IMU attitude comparison has not voted yet

When status-a = status-b, vote 0 for both IMUs A and B.

Otherwise, vote 1 for the IMU with the larger difference, and
0 for the other IMU.

(sub-phase imu error-isolation)

(engaged-system pass)

(isolate ?pair)

(excluded-lru ?pair ?imu-c)

(is-imu-valid ?imu-c att valid)

(irus-in-pair ?pair ?imu-a ?imu-b)

(imu-att ?imu-a ?status-a)

(imu-att ?imu-b ?status-b)

(not (imu-vote partial-imu-att
=>

(bind ?vote-a 0)

(bind ?vote-b 0)

(if (neq ?status-a ?status-b)
then

(assert

(assert

$?))

(if (neq ?status-a under)
then

(bind ?vote-a i)
else

(bind ?vote-b i)))

(imu-vote partial-imu-att

(imu-vote partial-imu-att

?vote-a

?vote-b
?imu-a))

?imu-b)))

(de,rule partial-imu-acc

I !

;;
;;

;;
;;
;;

;;
;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged
An error between IMUs A and B has been detected at the 2

level

IMU C ACC is valid

IMU A's ACC comparisons with IMUs B and C is some

status (call it status-a)

IMU B's ACC comparisons with IMUs A and C is some

status (call it status-b)

Partial IMU acceleration comparison has not voted yet

When status-a = status-b, vote 0 for both IMUs.

Otherwise, vote 1 for the IMU with the larger difference, and
0 for the other IMU.

(sub-phase imu error-isolation)

(engaged-system pass)

(isolate ?pair)

(excluded-lru ?pair ?imu-c)

41

w

(is-imu-valid

(irus-in-pair

(imu-acc ?imu-a ?status-a)

(imu-acc ?imu-b ?status-b)

(not (imu-vote partial-imu-acc
=>

(bind ?vote-a 0)

(bind ?vote-b 0)

(if (neq ?status-a ?status-b)
then

(assert

(assert

?imu-c acc valid)

?pair ?imu-a ?imu-b)

$?))

(if (neq ?status-a under)
then

(bind ?vote-a i)
else

(bind ?vote-b i)))

(imu-vote partial-imu-acc

(imu-vote partial-imu-acc

?vote-a

?vote-b
?imu-a))

?imu-b)))

--_ (defrule partial-imu-cant-vote

;; IF

;;

;;

_ ;;

;;

;;

; ; THEN

;;

; ; END

The PASS is engaged
An error between IMUs A and B has been detected at the 2

level

IMU C is invalid in velocity, attitude, and ACC AND

Partial IMU comparison has not voted yet

Vote 0 for IMUs A and B.

-- (sub-phase imu error-isolation)

(engaged-system pass)

(isolate ?pair)

- (excluded-lru ?pair ?imu-c)

(is-imu-valid ?imu-c vel invalid)

_ (is-imu-valid ?imu-c att invalid)

(is-imu-valid ?imu-c acc invalid)

(irus-in-pair ?pair ?imu-a ?imu-b)

(not (imu-vote partial-imu $?))
->

(assert (imu-vote partial-imu 0 ?imu-a))

- (assert (imu-vote partial-imu 0 ?imu-b)))

._(defrule two-level-vote-count

-- ;; IF

;;

;;

;;

;;

;;

u ;;

;; THEN

The PASS is engaged

GND-IMU comparison rules have cast vl votes for an IMU AND

GND-state comparison rules have cast v2 votes for that IMU AND

ACC comparison rules have cast v3 votes for that IMU AND

Partial IMU vel comparison rules have cast v4 votes for that IMU

Partial IMU att comparison rules have cast v5 votes for that IMU

Partial IMU acc comparison rules have cast v6 votes for that IMU

42

;; Compute vote total for the IMU as vl+v2+v3+v4+vS+v6.

;; END

(sub-phase

(engaged-system

(imu-vote

(imu-vote

(imu-vote

(imu-vote

(imu-vote

(imu-vote
=>

(bind ?total

(assert

imu error-isolation)

pass)

gnd ?vl ?imu)

state ?v2 ?imu)

acc ?v3 ?imu)

partial-imu-vel ?v4 ?imu)

partial-imu-att ?v5 ?imu)

partial-imu-acc ?v6 ?imu)

(+ ?vl ?v2 ?v3 ?v4 ?v5 ?v6))

(imu-vote total ?total ?imu)))

;;

;;

;;

- ;;

(defrule two-level-imu-isolation

IF

THEN

END

The PASS is engaged

Votes for IMU A exceeded votes for IMU B by 2 or more

Conclude IMU A has an error.

(sub-phase imu error-isolation)

(engaged-system pass)

(imu-vote total ?vote-a ?imu-a)_

(imu-vote total ?vote-b ?imu-b& ?imu-a)

(test (>= (- ?vote-a ?vote-b) 2))

?x <- (imu-quality ?imu-a $?)
=>

(retract ?x)

(assert (imu-quality ?imu-a suspect)))

(defrule two-level-component-isolation

;;

;;

-- ;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

The PASS is engaged
An error between IMUs A and B has been detected at the 2

level

IMU A is the one with the problem

Use the fault matrix to determine the problem with IMU A.

Notify operator of the problem.

Clear the miscompare indications for IMU B.

L

w

(sub-phase imu error-isolation)

(engaged-system pass)

?y <- (isolate ?pair)

(irus-in-pair ?pair ?imu-a ?imu-b)

?x <- (imu-quality ?imu-a suspect)

(imu-vel ?imu-a ?vel)

(imu-att ?imu-a ?att)

43

I

(imu-acc ?imu-a ?acc)

(fault-matrix ?vel ?att

?fl <- (imu-vel ?imu-b

?f2 <- (imu-att ?imu-b

?f3 <- (imu-acc ?imu-b
=>

(if (eq ?fault
then

(assert

?acc

?vel)

?att)

?acc)

else

(if (eq
then

else

(retract ?x)

?fault)

suspect)

(event pass-imu off-nominal alt

"IMU " ?imu-a " has an undiagnosable problem"))

?fault good)

(assert (event pass-imu off-nominal alt

"IMU " ?imu-a " is good"))

(assert (event pass-imu off-nominal alt

"IMU " ?imu-a " has a " ?fault " error"))))

(assert

(retract ?fl)

(assert (imu-vel

(retract ?f2)

(assert (imu-att

(retract ?f3)

(assert (imu-acc

(retract ?y))

(imu-quality ?imu-a ?fault))

?imu-b under))

?imu-b under))

?imu-b under))

(defrule two-level-cant-isolate

; ; IF

;;

;;

;;

_ ;;

;;

;;

THEN

END

The PASS is engaged

Votes for IMU A did not exceed votes for IMU B by 2 or more

Votes for IMU B did not exceed votes for IMU A by 2 or more

Notify operator that the IMU error cannot be isolated.

(sub-phase imu error-isolation)

(engaged-system pass)

?x <- (isolate ?pair)

(imu-vote total ?vote-a ?imu-a)_
(imu-vote total ?vote-b ?imu-b& ?imu-a)

(test (< (- ?vote-a ?vote-b) 2))

(test (< (- ?vote-b ?vote-a) 2))
=>

(assert (event pass-imu off-nominal alt

"Cannot isolate problem to IMU " ?imu-a " or " ?imu-b))

(retract ?x))

(defrule two-level-vote-cleanup

(sub-phase imu error-isolation)

(not (isolate ST))

?x <- (imu-vote $?)

44

=>

(retract ?x))

_v (defrule change-imu-quality

;;

;;

;;

;;

;;

;;

;;

w

IF

THEN

END

The PASS is engaged

An IMU was previously diagnosed as having a problem

That IMU's comparisons now indicate a different diagnosis

The new indicated diagnosis is a bias, resolver, or drift,

or no problem at all

Update the IMU's quality rating to reflect the new diagnosis.

Notify the operator of the new diagnosis.

(sub-phase

(engaged-system pass)

(good-imus 3)

(not (isolate $?))

?x <- (imu-quality ?imu

(imu-vel ?imu ?vel)

(imu-att ?imu ?att)

(imu-acc ?imu ?acc)

(fault-matrix ?vel ?att

(test (I I (eq ?fault

(eq ?fault

(eq ?fault

(eq ?fault
=>

(if (eq
then

imu error-isolation)

?fault good)

(assert

?quality)

else

(assert

(retract ?x)

(assert

?acc ?fault&-?quality)

bias)

resolver)

drift)

good)))

(event pass-imu nominal alt

"IMU " ?imu " is good"))

(event pass-imu off-nominal alt

"IMU " ?imu " has a " ?fault " error")))

(imu-quality ?imu ?fault)))

(defrule imu-status-lJght

(sub-phase imu error-isolation)

=_ (imu-avail-output ?system ?imu
(imu-quality ?imu ?quality)
=>

__ (if

(if

(assert

?availability)

(eq ?system pass)
then

(bind ?subsys pass-imu)
else

(bind ?subsys bfs-imu))

(eq ?availability avail)
then

(bind ?status ?quality)
else

(bind ?status ?availability))

(status-light ?subsys ?imu ?status)))

4,5

-L--

;;/

;;

ir

;;; GROUP

IMU Error Magnitude (3.4.2.3)

This group determines the magnitude of an error on an IMU; i.e., how

much bias, how much drift, how big a resolver error.

CONTROL FACTS

(sub-phase imu error-magnitude)

CONTAINING GROUP

Inertial Measurement Units

(defrule bias-magnitude

IF

THEN

END

The PASS is engaged
IMU A has an accelerometer bias

IMU B velocity is valid

IMU C velocity is invalid or IMU A-C compare has a smaller

difference than the IMU A-B comparison

Compute the magnitude of the bias using the A-B

pairwise velocity comparison.

Notify operator of the magnitude of the bias.

(sub-phase imu error-magnitude)

(engaged-system pass)

(imu-quality ?imu-a bias)

(Irus-in-pair ?pair-ab ?imu-a ?imu-b)

(Irus-in-pair ?pair-ac&-?pair-ab ?imu-a ?imu-c)

(is-imu-valid ?imu-b vel valid)

(or (is-imu-valid ?imu-c vel -valid)

(test (< (vel-diff ?pair-ac)

(vel-diff ?pair-ab))))
->

(assert (event pass-imu off-nominal alt

"Bias on IMU " ?imu-a " is " =(bias (vel-diff ?pair-ab))

" micro-gs")))

(defrule resolver-magnitude

; I

;,

;,

IF

THEN

The PASS is engaged
IMU A has a resolver error

IMU B attitude is valid

IMU C attitude is invalid or IMU A-C compare has

a smaller difference than the IMU A-B comparison

48

-r-

E

;;

;;
;;

Compute the magnitude of the resolver error using the A-B

pairwise attitude comparison.

Notify operator of the magnitude of the resolver error.
END

(sub-phase imu error-magnitude)

(engaged-system pass)

(imu-quality ?imu-a resolver)

(irus-in-pair ?pair-ab ?imu-a ?imu-b)

(irus-in-pair ?pair-ac&-?pair-ab ?imu-a ?imu-c)

(is-imu-valid ?imu-b att valid)

(or (is-imu-valid ?imu-c att valid)

(test (< (att-diff ?pair-ac)

(att-diff ?pair-ab))))
=>

(assert (event pass-imu off-nominal alt
"Resolver error on IMU " ?imu-a " is "

=(resolver (att-diff ?pair-ab)) " degrees")))

r_

defrule initial-misalignment

IF

THEN

END

The PASS is engaged

The initial misalignment for IMU A is unknown
IMU B attitude is valid

IMU C attitude is invalid or IMU A-C has a lower difference

than The IMU A-B comparison

Compute the misalignment of IMU A using the A-B

pairwise attitude comparison.

Save the computed misalignment for later drift calculations.

(sub-phase imu error-magnitude)

(engaged-system pass)

?x <- (initial-misalignment ?imu-a

(lrus-in-pair ?pair-ab ?imu-a ?imu-b)

(irus-in-pair ?pair-ac&-?pair-ab ?imu-a

(is-imu-valid ?imu-b att valid)
(or (is-imu-valid ?imu-c att valid)

(test (< (att-diff ?pair-ac)

(att-diff ?pair-ab))))

(current-time ?time)
=>

(bind ?resolver (resolver (att-diff

(retract ?x)

(assert (initial-misalignment ?imu-a

unknown)

?imu-c)

?pair-ab)))

?resolver ?time)))

(defrule drift-magnitude

;;

;;

;;

;;

IF

The PASS is engaged
IMU A has a drift

The initial misalignment of IMU A is known

47

;;
;;

I f

THEN

END

IMU B attitude is valid

IMU C attitude is invalid or IMU A-C compare has a

smaller difference than IMU A-B compare

Compute the magnitude of the drift using the A-B

pairwise attitude comparison and

the initial misalignment of A.

Notify operator of the magnitude of the drift.

v

(sub-phase imu error-magnitude)

(engaged-system pass)

(imu-quality ?imu-a drift)

(irus-in-pair ?pair-ab ?imu-a ?imu-b)

(irus-in-pair ?pair-ac&-?pair-ab ?imu-a ?imu-c)

(is-imu-valid ?imu-b att valid)
(or (is-imu-valid ?imu-c att valid)

(test (< (att-diff ?pair-ac)

(att-diff ?pair-ab))))

(current-time ?time)

(initial-misalignment ?imu-a ?resolver-0 ?time-0)
=>

(bind ?resolver (resolver (att-diff ?pair-ab)))

(bind ?drift (drift ?resolver ?resolver-0 ?time ?time-0))

(assert (event pass-imu off-nominal alt

"Drift on IMU " ?imu-a " is " ?drift " deg/hr")))

! f

;;

;;;

;;

_ ;;

;;

;;

;;

;;;

;;

-__ ;;;

;;

GROUP

IMU Failure Prediction (3.4.2.4)

This group tries to predict whether IMU RM will take any action on an
IMU error

CONTROL FACTS

(sub-phase imu failure-prediction)

CONTAINING GROUP

Inertial Measurement Units

(defrule three-level-failure-prediction

_ ;;

;;

;;

;;

_ ;;

;;

;;

_ ;;

;;

IF

THEN

END

Onboard IMU RM is at the 3 level

Exactly two pairwise differences exceed the fail threshold in

either velocity or attitude

A failure has not yet been predicted

Predict RM will fail the IMU common to the two pairs that

exceed the threshold and notify the operator.

(sub-phase imu failure-prediction)

(imu-sfc IIi)

(rel-imu-comp ?pair-i ?comp over)

=

w

(rel-imu-comp

(rel-imu-comp ?pair-3& ?pair-l& ?pair-2

(common-lru ?pair-i ?pair-2 ?imu)

?x <- (imu-rm-prediction fail)
=>

(assert (event pass-imu off-nominal alt

"Predict RM will fail IMU " ?imu))

(retract ?x)

(assert (imu-rm-prediction fail)))

?pair-2&_?pair-i ?comp over)

?comp over)

(defrule three-level-no-failure-prediction

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

Onboard IMU RM is at the 3 level

All 3 pairwise differences in velocity or attitude exceed the
fail threshold

A failure has not yet been predicted

Predict IMU RM will not take any action.

= ,

(sub-phase imu failure-prediction)

(imu-sfc iii)

(rel-imu-comp p-l-2 ?comp over)

(rel-imu-comp p-l-3 ?comp over)

(rel-imu-comp p-2-3 ?comp over)

?x <- (imu-rm-prediction none)
=>

(assert (event pass-imu off-nominal alt

"RM will not fail any IMUs"))

(retract ?x)

(assert (imu-rm-prediction inaction)))

I

(defrule two-level-failure-prediction

! !

;;

;;

;;

;;

;;

-: ;;

;;

;;

IF

THEN

END

Onboard IMU RM is at the 2 level

IMU A is available but not good

IMU B is available and good

IMUs A and B differ in velocity or attitude by more than
some threshold

A failure has not yet been predicted

Predict an RM action, and indicate IMU A is the one that needs
to be failed.

(sub-phase imu failure-prediction)

(imu-sfc 01111011110)

(imu-avail-output pass ?imu-a avail)
(imu-quality ?imu-a good)

(imu-avail-output pass ?imu-b&-?imu-a avail)

(imu-quality ?imu-b good)
(irus-in-pair ?pair ?imu-a ?imu-b)
(rel-imu-comp ?pair ?com_ over)
?x <- (imu-rm-prediction fail)
=>
(assert (event pass-imu off-nominal alt

"RM needs to fail IMU " ?imu-a))
(retract ?x)
(assert (imu-rm-prediction fail)))

Ill

7;

;;

__ ;;

l ! !

;7

;;;

;;

;;

GROUP

PASS IMU Recommendations (3.4.3.1)

Given the current state of IMUs, this group determines what actions are

required in the PASS.

CONTROL FACTS

(sub-phase imu pass-recommendation)

CONTAINING GROUP

Inertial Measurement Units

(de!rule reselect-imu-with-one-or-three-state-nav

;; IF

;;

;;
THEN

;;

- ;; END

E

An IMU is unavailable to the PASS due to deselection

That IMU is good

Recommend that IMU be reselected (after 0-delta-state if

3-state nay is still active).

(sub-phase

(imu-avail-output pass

(imu-quality ?imu good)

(nav-3-state ?nay-flag)
=>

(if

imu pass-recommendation)

?imu deselect)

(eq ?nay-flag on)
then

(assert (recommend pass-imu reselect-imu off-nominal alt.

"After zero delta state, OK to reselect IMU " ?imu))
else

(assert (recommend pass-imu reselect-imu off-nominal alt

"OK to reselect IMU " ?imu))))

!

(de!rule help-imu-dilemma

= ;; IF

;; IMU RM is in dilemma

;; IMU A is available to the PASS and good

;; IMU B is available to the PASS and not good

5O

THEN

END
Recommend deselecting IMU B.

(sub-phase imu pass-recommendation)

(imu-dilemma on)

(imu-avail-output pass ?imu-a avail)

(imu-quality ?imu-a good)

(imu-avail-output pass ?imu-b avail)
(imu-quality ?imu-b good)
=>

(assert (recommend pass-imu help-imu-dilemma off-nominal alt

"Resolve IMU dilemma by deselecting IMU " ?imu-b)))

(defrule cant-help-imu-dilemma

;; IF

;;

;;

;;

_T ;;

;7

;;

r-

THEN

END

IMU RM is in dilemma

IMU A is available to the PASS

IMU B is available to the PASS

Either A and B are both good or A and B are both not good

Notify operator that dilemma cannot be resolved.

(sub-phase imu pass-recommendation)

(imu-dilemma on)

(imu-avail-output pass ?imu-a avail)

(imu-avail-output pass ?imu-b& ?imu-a

(or (and

(imu-quality ?imu-a

(imu-quality ?imu-b

(and

(imu-quality ?imu-a

(imu-quality ?imu-b

(not (cant-help-imu-dilemma))
=>

(assert

(assert

good)

good))

:good)

good)))

(cant-help-imu-dilemma))

(event pass-imu off-nominal alt
"IMU RM DILEMMA.

avail)

Don't know which IMU is best.")))

(defrule end-imu-dilemma

(sub-phase imu pass-recommendation)

_- ?x <- (cant-help-imu-dilemma)

(imu-dilemma off)
=>

(retract ?x))

f

-- (defrule incorrect-imu-failure

;; IF
IMU A is unavailable to the PASS due to failure;;

;; IMU A is good

5]

;;

;;
;;
;;

THEN

END

IMU B is available to the PASS

IMU B is not good

Notify operator of incorrect RM isolation and recommend

switching to IMU A.

(sub-phase imu pass-recommendation)

(imu-avail-output pass ?imu-a fail)

(imu-quality ?imu-a good)

(imu-avail-output pass ?imu-b avail)

(imu-quality ?imu-b good)
=>

(assert (recommend pass-imu incorrect-imu-fai!ure off-nominal alt

"RM failed the wrong IMU; Reselect IMU " ?imu-a

" and deselect IMU " ?imu-b)))

(defrule deselect-commfaulted-imu

_- ;;

;;

;;

;;

;;

IF

THEN

END

An IMU is unavailable to the PASS due to commfault

That IMU has not been deselected

Recommend deselecting the IMU.

(sub-phase imu pass-recommendation)

(imu-avail-output pass ?imu commfault)

(imu-flag pass deselect ?imu off)
=>

(assert (recommend pass-imu deselect-commfaulted-imu

"Need to deselect IMU " ?imu)))

off-nominal alt

;;;

;;

;;

;;

;;

;;;

-- ;

;;

;;;

;;

_- ;;

GROUP

BFS IMU Recommendations (3.4.3.2)

Given the current state of IMUs, this group determines what actions

are required in the BFS.

CONTROL FACTS

(sub-phase imu bfs-recommendation)

CONTAINING GROUP

Inertial Measurement Units

_- ;;

;;

(defrule deselect-imu-in-bfs

IF

IMU A is not available to the PASS

IMU A is available to the BFS

IMU B is available to the BFS

_x

THEN

END

IMU B is good

Recommend deselecting IMU A in the BFS.

(sub-phase imu bfs-recommendation)

(imu-avail-output pass ?imu avail)

?x <- (imu-avail-output bfs ?imu avail)

(imu-avail-output bfs ?other-imu&-?imu avail)

(imu-quality ?other-imu good)
=>

(assert (recommend bfs-imu deselect-imu-in-bfs off-nominal alt

"Recommend deselecting IMU " ?imu " in the BFS")))

I

(defrule no-bfs-imus

;;

;;

v ;;

;;

;;

;;

-_-c--_

IF

THEN

END

The BFS is on IMU A

IMU A is unavailable to the PASS

Neither IMUs B nor C is good and available to the BFS

Notify operator of IMU shortage in the BFS.

(sub-phase

(bfs-imu ?imu-a)

(imu-avail-output

(irus-in-pair

(irus-in-pair

(test (< ?imu-b

(imu-avail-output

imu bfs-recommendation)

pass ?imu-a -avail)

?imu-a ?imu-b)_
?imu-a ?imu-c& ?imu-b)

?imu-c))

bfs ?imu-b -avail)

(imu-quality ?imu-b -good)

(imu-avail-output bfs ?imu-c -avail)

(imu-quality ?imu-c -good)
=>

(assert (event bfs-imu off-nominal alt
"The BFS is on IMU " ?imu-a

" and has no other IMUs available")))

!

= (defrule change-bfs-imu-i

;;

;;

;;

;;

;;

;;

;;

;;

_ ;;

;;

IF

THEN

END

The BFS is on IMU A

IMU A is not good
IMU A is available to the PASS

IMU B is available to the BFS

IMU B is good

Either IMU C is unavailable to the BFS or has a higher number
than IMU B

Recommend deselect/reselect IMU A to put the BFS on IMU B.

53

_r
(sub-phase imu bfs-recommendation)

(bfs-imu ?imu-a)

(imu-quality ?imu-a ~good)

(imu-avail-output pass ?imu-a avail)

(imu-avail-output bfs ?imu-b&-?imu-a

(imu-quality ?imu-b

(or
good)

(imu-avail-output bfs

(and

=>

(assert

avail)

?imu-a& ?imu-b -avail)

(imu-quality ?imu-c&-?imu-b&-?imu-a good)

(imu-avail-output bfs ?imu-c avail)

(test (< ?imu-b ?imu-c))))

(recommend bfs-imu change-bfs-imu off-nominal alt

"Recommend deselect-reselect IMU " ?imu-a

" in the BFS to get it on IMU " ?imu-b)))

(defrule change-bfs-imu-2

i I

;;

;;

. ;;

IF

The BFS is on IMU A

IMU A is not good

IMU B is available to the BFS and is good

IMU C is available to the BFS but is not good

I l

;;

;;

THEN

IMU C has a lower number than IMU B

Recommend deselect/reselect IMUs A and C to put the BFS
on IMU B.

END

(sub-phase imu bfs-recommendation)

(bfs-imu ?imu-a)

(imu-quality ?imu-a -good)

(imu-avail-output bfs ?imu-b&-?imu-a avail)

(imu-quality ?imu-b good)

(imu-avail-output bfs ?imu-c&-?imu-a&-?imu-b avail)

(imu-quality ?imu-c -good)

(test (< ?imu-c ?imu-b))
=>

(assert (recommend bfs-imu change-bfs-imu off-nominal alt
"Recommend deselect-reselect IMUs " ?imu-a " and "

?imu-c " in the BFS to get it on IMU " ?imu-b)))

5,1

3.5 State Vectors

--=

3 - 55

;;

;;

;;

l,r!

GROUP (3.5)
State Vector.

This group watches the PASS and BFS state vectors.

CONTROL FACTS

(sub-phase state ?)

CONTAINING GROUP

Entry

.... FACTS;It

(deffacts monitoring-state-phases ; These facts define the sequence of

; sub-phases in the monitoring phase
; of state vectors

(first-sub-phase state monitoring quality)

; The only sub-phase is quality checks

m

-.=_

(deffacts analysis-state-phases

(first-sub-phase state

(next-sub-phase state

; These facts define the sequence of

; sub-phases in the analysis phase of
; state vectors

analysis delta-state)

; The first sub-phase is delta-state
; recommendations

delta-state bfs-transfer)

; The last sub-phase is BFS transfer
; recommendations

,,(deffacts last-state-report ; Initializes facts which

; contain the times when the

; state errors were reported
; and the status that was

; reported. The initial

(last-state-report-with-hstd pass unknown 0.0)

; status is set to "unknown"

; so the status will be

; reported as soon as it is

; known.

(last-state-report-with-hstd bfs unknown 0.0)

(last-state-report-no-hstd unknown 0.0)

(previous-pass-bfs x unknown)

(previous-pass-bfs y unknown)

(previous-pass-bfs z unknown)

-- ;;

_ ;;; GROUP (3.5.1)

;; State Error Status

Ill

;

;;;

;;

This group reports the quality of the PASS and
BFS state vectors

CONTROL FACTS

(sub-phase state quality)

CONTAINING GROUP

State Vectors

_- (defrule state-error-change

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

For the available system

The HSTD is good AND
The PASS or BFS worst axis error is different from what

it was on the previous cycle

Record the new worst axis status

(sub-phase state quality)

(hstd good)

(system-available ?system)

(gnd-state ?system worst-axis ?status)

?x <- (last-state-report-with-hstd ?system
=>

(if (eq ?status over)
then

else

(retract

(assert

?status ?)

(assert (status-light state ?system no-go))

(assert (status-light state ?system go)))

?x)
(last-state-report-with-hstd ?system ?status o.o)))

w

(defrule state-report-state-error

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

For the available system

The HSTD is good AND

More than 60 seconds has elapsed since the last report

Report the error on every axis whose status is the same
as the worst axis

(sub-phase state quality)

(hstd good)

(system-available ?system)

?x <- (last-state-report-with-hstd

(gnd-state ?system u ?u)

(gnd-state ?system v ?v)

(gnd-state ?system w ?w)

(gnd-state ?system udot ?udot)

(gn]-state ?system vdot ?vdot)

(gnd-state ?system wdot ?wdot)

?system ?status ?last-time)

57

%_

(current-time ?time)

(test (>= ?time (+ ?last-time 60.0)))
=>

(if (eq ?status under)
then

(assert (event state nominal alt

"The " ?system " nay state is go"))
else

(if (eq ?u ?status)
then

(if (eq
then

(if (eq
then

(if (eq
then

(if (eq
then

(if

(bind ?e (state-error ?system u))

(assert (event state nominal alt

"The " ?system " U error is " ?e " feet")))

?v ?status)

(bind ?e (state-error ?system v))

(assert (event state nominal alt

"The " ?system " V error is " ?e " feet")))

?w ?status)

(bind ?e (state-error ?system w))

(assert (event state nominal alt

"The " ?system " W error is " ?e " feet")))

?udot ?status)

(bind ?e (state-error ?system udot))

(assert (event state nominal alt

"The " ?system " UDOT error is " ?e " feet/sec")))

?vdot ?status)

(bind ?e (state-error ?system vdot))

(assert (event state nominal alt

"The " ?system " VDOT error is " ?e " feet/sec")))

(eq ?wdot ?status)
then

(bind ?e (state-error ?system wdot))

(assert (event state nominal alt

"The " ?system " WDOT error is " ?e " feet/sec"))))

(retract ?x)

(assert (last-state-report-with-hstd ?system ?status ?time)))

(defrule state-pass-bfs-timing-problem

;; IF

;; The HSTD is not good AND

;; Both systems are available AND

;; The delta time is greater than 0.003 seconds

;; THEN

;; Report that there is a timing problem between

-- ;; the PASS and BFS

;; END

(sub-phase state quality)

(hstd good)

(system-available pass)

(system-available bfs)

(pass-bfs-delta-time over)
=>

(assert (event state off-nominal alt
"There is a timing problem between PASSand BFS")))

(defrule state-pass-bfs-error-change

;;
;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

Both systems are available AND

There is no timing problem between the PASS and the BFS AND

The HSTD is not good AND
The PASS-BFS worst axis error is different from what

it was on the previous cycle

Record the new worst axis status

(sub-phase state quality)

(system-available pass)

(system-available bfs)

(pass-bfs-delta-time under)
(hstd good)

(pass-bfs worst-axis ?status)

?x <- (last-state-report-no-hstd -?status ?)
=>

(retract ?x)

(assert (last-state-report-no-hstd ?status 0.0)))

...._ (defrule state-report-pass-bfs-error

;; IF

;;

;;

;;

;;

I;

;; THEN

;;

;;
;; END

Both systems are available AND

There is no timing problem between the PASS and the BFS AND

The HSTD is not good AND

More than 60 seconds has elapsed since the last report
of PASS-BFS errors

Report the error on every axis whose status is the same
as the worst axis

r

W

(sub-phase state quality)

(hstd good)

(system-available pass)

(system-available bfs)

(pass-bfs-delta-time under)

?a <- (last-state-report-no-hstd

(pass-bfs x ?x)

(pass-bfs y ?y)

(pass-bfs z ?z)

(pass-bfs xdot ?xdot)

(pass-bfs ydot ?ydot)

(pass-bfs zdot ?zdot)

(current-time ?time)

(test (>- ?time
=>

(if (eq ?status
then

bfs ?status ?last-time)

(+ ?last-time 60.0)))

under)

(assert

else
(if (eq

then

(if (eq
then

(retract
(assert

(event state nominal alt
"The" " PASS and BFS are tracking"))

?x ?status)

(bind ?e (pass-bfs x))
(assert (event state nomlnal alt

"PASS-BFS X is " ?e " feet")))
?y ?status)

(bind ?e (pass-bfs y))
(assert (event state nominal alt

"PASS-BFS Y is " ?e " feet")))
(if (eq ?z ?status)

then
(bind ?e (pass-bfs z))
(assert (event state nominal alt

"PASS-BFS Z is " ?e " feet")))
(if (eq ?xdot ?status)

then
(bind ?e (pass-bfs xdot)
(assert (event state nominal alt

"PASS-BFS XDOTis " ?e " feet/sec")))
(if (eq ?ydot ?status)

then
(bind ?e (pass-bfs ydot))
(assert (event state nominal alt

"PASS-BFS YDOTis " ?e " feet/sec")))
(if (eq ?zdot ?status)

then
(bind ?e (pass-bfs zdot')
(assert (event state nominal alt

"PASS-BFS ZDOTis " ?e " feet/sec"))))

?a)
(last-state-report-no-hstd bfs ?status ?time)))

;,;

;,

;,

;,

;;

__ ;;;

GROUP (3.5.2)

Delta State Update

This group determines whether or not a delta state update is
needed.

CONTROL FACTS

(sub-phase state delta-state)

CONTAINING GROUP

State Vectors

(defrule state-need-delta-state

_ ;;

;;

IF

The HSTD is good AND

For the engaged system the

GND-system shows the system is above the update limits

GO

THEN

END
Request a delta-state update.

(sub-phase state delta-state)

(hstd good)

(engaged-system ?system)

(gnd-state ?system worst-axis over)

(gnd-state ?system worst-velocity ?velocity)
=>

(if

(assert

(If (eq ?velocity under) (eq ?velocity zero))
then

(bind ?update-type position-only)
else

(bind ?update-type position-and-velocity))

(need-delta-state ?update-type)))

(defrule state-ok-for-delta-state

; ; IF

;;

;;

_ ;;

;;

;;

THEN

END

The HSTD is good AND

A delta state is needed

Ground and engaged system runway are the same

Recommend a delta state update

(sub-phase state delta-state)

(hstd good)

(need-delta-state ?update-type)

(engaged-system ?system)

(runway ground ?runway)

(runway ?system ?runway)
=>

(assert (recommend state update-xfer

"We need a " ?update-type

" update to the " ?system)))

off-nominal alt

(de frule

;;

;;

;;

;;

;;

;;

state-not-ok-for-delta-state

IF

THEN

END

The HSTD is good AND
A delta state is needed

Ground and engaged system runway are not the same

Notify the operator that a delta is needed but

there is a runway mismatch.

(sub-phase state delta-state)

(hstd good)

(need-delta-state ?update-type)

(engaged-system ?system)

(runway ground ?runwaya)

(runway ?system ?runwayb&~?runwaya)

61

=>

(assert (recommend state update-xfer off-nominal alt

"We need a " ?update-type " update to the " ?system

" but there is a mismatch in runways ground = "

?runwaya " " ?system " = " ?runwayb)))

(defrule state-inhibit-filter-processing

;; IF

;;

;;

;;

;; THEN

;;

;;

;;

;;

;;

;;

;;

= ;; END

For the engaged system

A position and/or velocity delta state is needed AND

The drag, TACAN, and/or ADTA flags are not inhibited.

Notify the operator that (sensor) is not inhibited
and need to be inhibited before the delta state.

(include item entries)
NOTE: item entries are as follows:

Specification number: BFS=50 PASS=51
TACAN inhibit item 20

Drag inhibit item 23
ADTA inhibit item 26

(aif

(aif

(aif
=>

(if

(sub-phase state delta-state)

(hstd good)

(need-delta-state ?update-type)

(engaged-system ?system)

?system tacan ?status-tacan)

?system baro ?status-baro)

?system drag ?status-drag)

(if

(if

(if

(eq ?system pass)
then

(bind ?spec 51)
else

(bind ?spec 50))

(neq ?status-tacan inhibit)
then

(assert (event state update-xfer off-nominal alt

"need to inhibit tacan in the " ?system

" to perform a " ?update-type "delta state by "

"executing an item 20 of spec " ?spec)))

(neq ?status-baro inhibit)
then

(assert (event state update-xfer off-nominal alt

"need to inhibit baro in the " ?system

" to perform a " ?update-type "delta state by "

"executing an item 26 of spec " ?spec)))

(neq ?status-drag inhibit)
then

(assert (event state update-xfer off-nominal alt

"need to inhibit drag in the " ?system

" to perform a " ?update-type "delta state by "

"executing an item 23 of spec " ?spec))))

w

62

(defrule state-delta-state-is-in-bfs

;;

;;

f I

;;

;;

;;

;;

;;

IF

THEN

END

BFS is engaged AND

Delta-state is in progress AND

Ground-system errors previously not close to zero AND

Ground-system errors are now close to zero

Report that state update is in

(sub-phase state delta-state)

(engaged-system bfs)

?x <- (need-delta-state ?update-type)

(gnd-state bfs worst-axis ?near-zero)

(test (< ?near-zero 200))
=>

(assert (event state update-xfer nominal alt

"delta state " ?update-type " occurred in the bfs"))

(retract ?x))

-- Ill

;;
;;

;;
;;

;;;

- ;;

__ ;;;

;;

;;

GROUP (3.5.3)
BFS Transfer

This group checks to see if a transfer to the BFS is needed.

CONTROL FACTS

(sub-phase state bfs-transfer)

CONTAINING GROUP

State Vectors

(defrule state-need-transfer

;

;,

;,

;,

;i

;

IF

THEN

END

The HSTD is good AND

Both systems are available AND

GND-BFS shows the BFS state is above the update limits AND

Either the PASS state error is good OR

The PASS state error status is suspect and the PASS-BFS

status is suspect or bad AND

No timing error exist between the PASS-BFS

Recommend a transfer to the BFS

(sub-phase state bfs-transfer)

(hstd good)

(system-available pass)

(system-available bfs)

(gnd-state bfs worst-axis over)

(gnd-state pass worst-axis ?status-a)

(pass-bfs worst-axis ?status-b)

(pass-bfs-delta-time under)

63

(or

=>

(assert

(or (test (eq ?status-a zero))

(test (eq ?status-a under)))

(and (test (eq ?status-a suspect))

(or (test (eq ?status-b suspect))

(test (eq ?status-b over)))))

(recommend state bfs-transfer off-nominal

"We need a transfer to the BFS")))

alt

(defrule

;; IF

;;

;; THEN

;;

;; END

state-transfer-in

PASS-BFS position differences are now close to zero AND

PASS-BFS position differences were not close to zero previously

Report that the transfer is in

(sub-phase

(pass-bfs x zero)

(pass-bfs y zero)

(pass-bfs z zero)

(previous-pass-bfs x

(previous-pass-bfs y

(previous-pass-bfs z

(not (transfer-occurred))
=>

(assert (event state nominal

(assert (transfer-occurred)))

state bfs-transfer)

N

zero& unknown)

zero& unknown)

zero& unknown)

alt "BFS" " transfer is in"))

;;

;;

;;

(defrule

IF

THEN

END

state-previous-pass-bfs-error-update

PASS-BFS position differences are different from what

it was on the previous cycle

Update the previous PASS-BFS error differences

(sub-phase

(pass-bfs x ?x-error)

(pass-bfs y ?y-error)

(pass-bfs z ?z-error)

?x <- (previous-pass-bfs

?Y <- (previous-pass-bfs

?z <- (previous-pass-bfs
_>

(retract ?x ?y ?z)

(assert (previous-pass-bfs

(assert (previous-pass-bfs

(assert (previous-pass-bfs

state bfs-transfer)

x]?x-error)

y ?y-error)

z ?z-error)

x ?x-error))

y ?y-error))

z ?z-error)))

f

(de frule state-trans fer-cleanup

G4

(sub-phase state bfs-transfer)

?x <- (transfer-occurred)
(pass-bfs xlylz zero)
=>

(retract ?x))

w 65

3.6 Three-Strinq State Vectors

v

v

v

3 - 66

;;; GROUP

;; Three State Nay (3.6)

-'_ ;; This section performs checks on the 3-string state vectors, determining

;; the quality of each vector. It also detects delta-state updates.

;;
;;; CONTROL FACTS

; (sub-phase three-state three-state)

;;

,,, CONTAINING GROUP

;; Entry

;;

;;; FACTS

(deffacts monitoring-3state-phases

(first-sub-phase three-state

; These facts define the sequence of

; subphases within the monitoring phase

; of 3-state nay.

monitoring three-state)

; There is only 1 subphase, called
; three-state.

(deffacts initial-3state-facts

(state-quality 1 unknown)

(state-quality 2 unknown)

(state-quality 3 unknown)

(nav-3-state on)

; These facts represent assumptions

; about 3-state nav before any data is
; received.

; quality of state vector 1 is unknown.

; quality of state vector 2 is unknown.

; quality of state vector 3 is unknown.

; 3-state nay is active

(defrule end-3-state-nav

;;

;;

;;

;;

IF

THEN

END

3-state naY is active

A MSBLS measurement has been processed

Conclude 3-state nay is no longer active

(sub-phase three-state three-state)

?x <- (nav-3-state on)

(filter-flag pass mlsrlmlsalmlse process)
=>

(retract ?x)

(assert (nav-3-state off)))

(defrule gnd-to-state-comparison

;; IF

67

;;

i;

;;

THEN

END

3-state nav is active

The HSTD is good

A state vector previously had a certain quality rating

Comparison with the ground indicates a different quality

Change that state vector's rating to the quality indicated

by the ground comparison

(sub-phase three-state three-state)

(nav-3-state on)

(hstd good)

(gnd-3state ?id worst-axis ?status)

(quality-table ?status ?quality)

?x <- (state-quality ?id ?quality)
=>

(assert (status-light three-state ?id

(retract ?x)

(assert (state-quality ?id ?quality)))

?quality))

(defrule state-to-state-comparison-i

;;

;;

;;

;;

;;

;;

-._ ;;

;;

;;

IF

THEN

END

3-state nay is active

all 3 IMU's are available

The hstd is not good

State A previously had a certain quality rating

Comparison with states B and C indicates a different

quality

Change the quality rating of state A to that indicated by

comparisons with states B and C.

(sub-phase

(nav-3-state

(good-imus 3)

(hstd good)

(irus-in-pair

(state-state

(irus-in-pair

(state-state

three-state

on)

?pair-ab

?pair-ab

?pair-ac

?pair-ac

three-state)

?imu-a ?imu-b)

worst-axis ?status-ab)

?imu-a ?imu-c&-?imu-b)

worst-axis ?status-ac)

(min-miscompare ?status-ab ?status-ac ?status)

(quality-table ?status ?quality)
?x <- (state-quality ?imu-a ?quality)
=>

(assert (status-light three-state ?imu-a ?quality))

(retract ?x)

(assert (state-quality ?imu-a ?quality)))

! (defrule state-to-state-comparison- 2

- ; ; IF

;; 3-state nav is active

68

E

THEN

END

2 IMU's are not commfaulted

The hstd is not good

State A previously had same rating as State B

IMU A previously had same rating as IMU B

State A comparison with State B has a different

rating

Change the quality rating of both states A and B

Notify the operator of inability to tell which

state is going bad

(sub-phase three-state three-state)

(nav-3-state on)

(good-imus 2)

(hstd good)

?x <- (state-quality ?imu-a ?quality)

?y <- (state-quality ?imu-b& ?imu-a ?quality)

(imu-quality ?imu-a ?imu-quality)

(imu-quality ?imu-b ?imu-quality)

(irus-in-pair ?pair-ab ?imu-a ?imu-b)

(state-state ?pair-ab worst-axis ?status-ab)
(quality-table ?status-ab ?new-quality& ?quality)
=>

(assert (status-light

(assert (status-light

(retract ?x ?y)

(assert (state-quality

(assert (state-quality

(assert

three-state ?imu-a ?new-quality))

three-state ?imu-b ?new-quality))

?imu-a ?new-quality))

?imu-b ?new-quality))

(event three-state off-nominal alt

"Unable to isolate which state is going bad, "

"state " ?imu-a " or state " ?imu-b)))

(defrule state-to-state-comparison-3

;;

;;
;;

;;

;;

;;

;;

;;

_.. ;;

;;

;;

IF

THEN

END

3-state nav is active

2 IMU's are not commfaulted

The hstd is not good

State A previously had same rating as State B

IMU A previously had a better rating than IMU B

State A comparison with State B has a different

rating

Change State B's quality rating to the new one

Leave State A's quality rating as it was

(sub-phase three-state three-state)

(nav-3-state on)

(good-imus 2)
(hstd good)

(state-quality ?imu-a ?quality)

?x <- (state-quality ?imu-b& ?imu-a

(imu-quality ?imu-a ?quality-imua)

(imu-quality ?imu-b ?quality-imub)

?quality)

8,9

(or (and (test (eq ?quality-imua good))

(test (neq ?quality-imub good)))

(and (test I_ ?quality-imua suspect))(test (eq ?quality-imub bad)

(eq ?quality-imub unknown)))))

(irus-in-pair ?pair-ab ?imu-a ?imu-b)

(state-state ?pair-ab worst-axis ?status-ab)
(quality-table ?status-ab ?new-quality& ?quality)
=>

(assert (status-light three-state ?imu-b ?new-quality))

(retract ?x)

(assert (state-quality ?imu-b ?new-quality)))

(defrule state-to-state-comparison-4

;;

;;

;;

;;

! !

;;

;;

___ ;;

;;

IF

THEN

END

3-state nav is active

2 IMU's are not commfaulted

The hstd is not good

State A previously had same rating as State B

State A comparison with State B has a different

rating

Change State B's quality rating to the new one

Leave State A's quality rating as it was

(sub-phase three-state three-state)

(nav-3-state on)

(good-imus 2)
(hstd good)

(state-quality ?imu-a ?quality)
?x <- (state-quality ?imu-b& ?imu-a ?quality)

(irus-in-pair ?pair-ab ?imu-a ?imu-b)

(state-state ?pair-ab worst-axis ?status-ab)

(quality-table ?status-ab ?new-quality& ?quality)
=>

(assert (status-light three-state ?imu-b ?new-quality))

(retract ?x)

(assert (state-quality ?imu-b ?new-quality)))

%__

%__

defrule zero-delta-state-occurred

IF

THEN

END

3-state nav is active

A non-zero delta state has not been recommended

All three pairwise state differences go to zero

Notify operator that zero-delta-state occurred

(sub-phase three-state three-state)

(nav-3-state on)

(not (need-delta-state ST))

(not (delta-state-occurred))

7O

(state-state p-l-2 worst-axis zero)

(state-state p-l-3 worst-axis zero)

(state-state p-2-3 worst-axis zero)
=>

(assert (event three-state off-nominal alt

"The " "crew did a zero-delta-state"))

(assert (delta-state-occurred)))

(defrule delta-state-occurred

;;

;;

;;

! !

;;

;;

IF

THEN

3-state nay is active

A non-zero delta-state has been recommended

All three pairwise state differences go to zero

Notify operator that delta state has been performed

(sub-phase three-state three-state)

(nav-3-state on)

?x <- (need-delta-state $?)

(not (delta-state-occurred))

(state-state p-l-2 worst-axis zero)

(state-state p-l-3 worst-axis zero)

(state-state p-2-3 worst-axis zero)
=>

(assert (event three-state nominal alt

"Delta-state " "is in the PASS"))

(assert (delta-state-occurred))

(retract ?x))

(defrule delta-state-cleanup

_- (sub-phase three-state three-state)

?x <- (delta-state-occurred)

(state-state _ _ zero)
=>

(retract ?x))

v

7]

3.7 Drag Altitude

w

3 - 72

;;; GROUP
;; Drag Altitude (3.7)

-- ;; This group monitors drag altitude and recommends (output)

;; a setting for the drag AIF switch.

;;
''' CONTROL FACTS

; (sub-phase drag ?)

;;

;;; CONTAINING GROUP

;; Entry

tr

;;; FACTS

(deffacts monitoring-drag-phases ; These facts define the sequence of

-- ; sub-phases within the monitoring

; phase of drag

(first-sub-phase drag monitoring watch-flags)

_ ; The first sub-phase watches for change

; in the value of flag parameters

deffacts analysis-drag-phases

(first-sub-phase drag

; These facts define the sequence of

; sub-phases within the analysis phase

; of drag

analysis recommendation)

; There is only one sub-phase: recom-

(deffacts initial-drag-facts

(prey-filter-flag pass drag

(prev-filter-flag bfs drag

; These facts represent assumptions

; about drag before any data is received

process)

; drag is being processed in the PASS

process)

; drag is being processed in the BFS

l!

;;
;;; GROUP

;; Drag Flag Status (3.7.1)

;; This group watches for changes in the drag filter flag

;;
;;; CONTROL FACTS

; (sub-phase drag watch-flags)
;;

;;; CONTAINING GROUP

-- ;; Drag Altitude

;;

If

(defrule drag-filter-flag-changed

73

IF

THEN

END

For available systems

The current value of the drag filter flag is anything but
off AND

The value of the flag is different from its previous value

Conclude that the value has changed

Notify the operator if the new value is "process"

(sub-phase drag watch-flags)

(system-available ?sys)

(filter-flag ?sys drag ?flag&-off)

?x <- (prey-filter-flag ?sys drag ?flag)
=>

(retract ?x)

(assert (prey-filter-flag ?sys drag ?flag))

(if (eq ?flag process)
then

(assert (event drag nominal alt "Processing" " drag"))))

-- (defrule drag-end-drag-processing

;;

;;

;;

;;

;;

IF

THEN

END

For available systems

The current value of the drag filter flag is off

The previous value is not off AND
Either

The altitude is less than 85.2 kft OR

Baro is being processed

Conclude drag processing has ended

i

(sub-phase drag watch-flags)

(system-available ?sys)

(filter-flag ?sys drag off)

?x <- (prey-filter-flag ?sys

(altitude ?alt)

(or (test (< ?alt 85200))

(filter-flag ?sys baro
->

(retract ?x)

N

drag off)

processledit))

(assert (prev-filter-flag ?sys drag off))

(assert (event drag nominal alt

"Processing" " of drag has stopped in " ?sys)))

AND

m

;;

;;;

;;

;;

;;

;;

;;;

GROUP

Drag Recommendations (3.7.2)

This group determines a recommended setting for the drag altitude
AIF switch

CONTROL FACTS

(sub-phase drag recommendation)

74

End of Document

m

w

k

THEN

END

Drag is being forced
The altitude is less than 85.2 kft

Recommend drag be inhibited

(sub-phase drag recommendation)

(system-available ?sys)

(aif ?sys drag force)

(altitude ?alt)

(test (<= ?alt 85200))
=>

(assert (recommend drag inhibit-drag off-nominal alt

"We" " are below 85.2 kft; Recommend inhibiting drag in the " ?sys)))

w

m

i

U

7G

PRECEDING PAGE BLANK NOT FILMED

3.8 Tactical Air Naviqation

w

m

z_

3 - 77

//;
//

;/

/7

/;
;;;

;
7/

//

7/

GROUP

TACAN (3.8)

This group watches the TACAN systems to determine whether

TACAN data is useable, which LRUs are good, and which
ground station should be used.

CONTROL FACTS

(sub-phase tacan ?)

CONTAINING GROUP

Entry

i

w

;;; FACTS

(deffacts monitoring-tacan-phases

(first-sub-phase tacan

(next-sub-phase tacan

(next-sub-phase

(next-sub-phase

(next-sub-phase

tacan

tacan

tacan

; These facts define the

; sequence of sub-phases in the

; monitoring phase of TACAN

monitoring configuration)

; First is a check of the

; onboard configuration

configuration availability)

; Then comes a check for LRU

; availability

availability quality-rating)

; Then comes a check on quality

quality-rating quality)

quality watch-flags)

; Last is a flag-status check

(deffacts analysis-tacan-phases

(first-sub-phase tacan

(next-sub-phase tacan

(next-sub-phase tacan

(next-sub-phase tacan

(next-sub-phase tacan

; These facts define the

; sequence of sub-phases in the

; analysis phase of TACAN

analysis toggle)

; First is a check to see if

; a toggle is necessary

toggle deselect)

; Next is a check to see which

; LRUs need to be deselected

deselect clean-up)

; Next is a fact-base clean-up

clean-up reselect)

; Next is a check to see which

; LRUs need to be reselected

reselect aif-change)

; Last is a determination of

; the best AIF setting

-- (deffacts initial-tacan-facts

(tacan-status pass 1

(tacan-status pass 1

; These facts represent

; assumptions about TACAN

; before any data is received

range avail) ; LRU 1 range available in PASS

bearing avail) ; LRU 1 bear available in PASS

78

--)

(tacan-status pass

(tacan-status pass

(tacan-status pass

(tacan-status pass
(tacan-status bfs

(tacan-status bfs

(tacan-status bfs

(tacan-status bfs

(tacan-status bfs

(tacan-status bfs

(tacan-lru-quality

(tacan-lru-quality

(tacan-lru-quality

(tacan-lru-quality

(tacan-lru-quality

(tacan-lru-quality

(prev-tacan-channel

(prev-tacan-channel

(prev-tacan-channel

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

2

3

range avail) ; LRU 2 range available in PASS
bearing avail) ; LRU 2 bear available in PASS

range avail) ; LRU 3 range available in PASS
bearing avail) ; LRU 3 bear available in PASS

range avail)

bearing avail)

range avail)

bearing avail)

range avail)

bearlng avail)

range none)

bearing none)

range none)

bearlng none)

range none)

bearing none)

-999)

-999)

-999)

; LRU 1 range available in BFS

; LRU 1 bear available in BFS

; LRU 2 range available in BFS
; LRU 2 bear available in BFS

; LRU 3 range available in BFS
; LRU 3 bear available in BFS

; no rating yet on LRU 1 range

; no rating yet on LRU 1 bearing

; no rating yet on LRU 2 range

; no rating yet on LRU 2 bearing

; no rating yet on LRU 3 range

; no rating yet on LRU 3 bearing
; LRU 1 channel number not known

; LRU 2 channel number not known

; LRU 3 channel number not known

(prev-tacan-lock

(prev-tacan-lock

(prey-filter-flag

(prey-filter-flag

(prey-filter-flag

(prey-filter-flag

(prey-data-good

(prey-data-good

(prey-data-good

(prey-data-good

range off)

bearing off)

pass tacr off)

pass tacb off)

bfs tacr off)

bfs tacb off)

pass tacr off)

pass tacb off)

bfs tacr off)

bfs tacb off)

; no range locked on yet

; no bearing locked on yet

; PASS is not processing range

; PASS is not processing bearing

; BFS is not processing range

; BFS is not processing bearing

; range data-good off in PASS

; bearing data-good off in PASS

; range data-good off in BFS

; bearing data-good off in BFS

(last-tacan-quality 1

(last-tacan-quality 1

(last-tacan-quality 2

(last-tacan-quality 2

(last-tacan-quality 3

(last-tacan-quality 3

(selected-channel 0)

(error-before-tacan unknown)

(selected-tacan range no-go)

(selected-tacan bearing no-go)

range unknown) ; LRU 1 previous range quality

bearing unknown);LRU 1 previous bearing uality

range unknown) ; LRU 2 previous range quality

bearing unknown);LRU 2 previous bearing uality

range unknown) ; LRU 3 previous range quality

bearing unknown);LRU 3 previous bearing uality

; Actual TACAN channel unknown

; Status of the state error

; before TACAN processing is
; unknown

; Selected range is not yet good

; Selected brng is not yet good

: ;;;

;;

;;

;;

;;

;;;

;;

;;;

;;

;;

f!

GROUP (3.8.1)

TACAN Channel Configuration

This group makes sure all LRUs are tuned to the correct channel.

CONTROL FACTS

(sub-phase tacan configuration)

CONTAINING GROUP

TACAN

v 79

(defrule tacan-skip-tacan

;;

;;

;;

;;

IF

THEN

END

The wrong runway is selected in the engaged system

Disable the rest of the TACAN checks

?x <- (sub-phase tacan

(runway desired ?slot)

(engaged-system ?sys)

(runway ?sys ?slot)
=>

(retract ?x))

configuration)

(defrule tacan-channel-changed

;;

;;

- ;;

--;;

IF

THEN

END

All LRUs are tuned to a different channel than before

Notify operator of the change in selected channel

(sub-phase tacan configuration)

(tacan-channel 1 ?channel)

(tacan-channel 2 ?channel)

(tacan-channel 3 ?channel)

?x <- (selected-channel -?channel)
->

(assert (tacan-status-changed))
(retract ?x)

(assert (selected-channel ?channel))

(assert (event tacan nominal alt

"TACAN is now on channel " ?channel)))

(defrule tacan-toggle-tacan-due-to-wrong-channel

;;

;;

;;

.-;;

;;

;;

;;

;;

;;

IF

THEN

END

For the engaged system
The selected channel is not the desired channel

The selected channel is in the correct area of the

site table

Recommend toggle TACAN to get to the desired channel

Indicate that tacan is no-go for the engaged system

(sub-phase tacan configuration)

(engaged-system ?sys)

(selected-channel ?channel&-0)

(desired-channel ?desired&~?channel)

(desired-tacan ?slot)

(same-area ?slot ?other-slot)

(test (= ?channel (lookup-tacan ?other-slot)))
=>

(assert (status-light tacan ?sys no-go))

80

(assert (recommend tacan toggle-tacan off-nominal alt

"Need to toggle TACAN to get on channel " ?desired)))

(defrule tacan-gpc-mode

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

For the engaged system
The selected channel is not the desired channel

The selected channel it not in the correct area of the

site table

Recommend the TACANs be put in GPC mode

Indicate that TACAN is no-go for the engaged system

(sub-phase tacan configuration)

(engaged-system ?sys)
(selected-channel ?channel&-0)

(desired-channel ?desired&-?channel)

(desired-tacan ?slot)

(same-area ?slot ?other-slot)

(test (! (= ?channel (lookup-tacan ?other-slot))))
=>

(assert (status-light tacan ?sys no-go))

(assert (recommend tacan gpc-mode off-nominal alt

"Need" " to put the TACANs in GPC mode")))

(defrule tacan-fix-lru-channel

;;

;;

_ ;;

;;

;;

;;

; ; IF

THEN

END

For the engaged system

One LRU is not tuned to the desired channel

At least one other LRU is tuned to the desired channel

Recommend the mis-tuned LRU be put in GPC mode

Indicate that TACAN is no-go for the engaged system

(sub-phase tacan configuration)

(engaged-system ?sys)

(desired-channel ?channel)

(tacan-channel ?Iru-a -?channel)

(tacan-channel ?iru-b ?channel)
->

(assert (status-light tacan ?sys no-go))

(assert (recommend tacan gpc-mode off-nominal alt

"Need to put TACAN " ?iru-a " in GPC mode")))

(defrule tacan-config-is-good

;;

;;

;;

IF

THEN

For the engaged system
All three LRUs are tuned to the desired channel

8]

;; The TACAN configuration is good
;; END

(sub-phase tacan configuration)

(engaged-system ?sys)
(desired-channel ?channel)

(tacan-channel 1 ?channel)

(tacan-channel 2 ?channel)

(tacan-channel 3 ?channel)
=>

(assert (status-light tacan ?sys go)))

!

;; GROUP

; TACAN Availability (3.8.2)

; This group determines which LRUs are available in the engaged system.

; It also determines why the unavailable LRUs are unavailable.

;; CONTROL FACTS

(sub-phase tacan availability)

;; CONTAINING GROUP

; TACAN

!

--(defrule tacan-commfault

IF

THEN

END

For the engaged system

A TACAN LRU was not previously commfaulted or powered down

The commfault flag for that LRU is now on

Notify the operator that the LRU is commfaulted (unless the

whole string is down)

Conclude that range and bearing from the LRU are no longer
available due to commfault

(sub-phase tacan availability)

(engaged-system ?sys)

?x <- (tacan-status ?sys ?iru

?y <- (tacan-status ?sys ?iru

(tacan-flag ?sys commfault ?iru on)

(string-commfault ?sys ?iru ?string-flag)
=>

(if (eq ?string-flag off)
then

(assert

range commfault&_ power-off)

bearing commfault& power-off)

(assert (status-light tacr ?lru

(assert (status-light tacb ?lru

(assert (tacan-status-changed))

(retract ?x)

(retract ?y)

(assert (tacan-status ?sys ?iru

(event tacan off-nominal alt

"Commfault TACAN " ?Iru " in the " ?sys)))

commfault))

commfault))

range commfault))

82.

(assert (tacan-status ?sys ?iru bearing commfault)))

(defrule tacan-commfault-clear

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

For the engaged system
A TACAN LRU was previously commfaulted

The commfault flag for that LRU is now off

Notify the operator that the commfault has cleared

(unless) the whole string was down)
Conclude that the LRU has the status indicated by the

fail and deselect indicators

(sub-phase tacan availability)

(engaged-system ?sys)

?x <- (tacan-status ?sys ?iru range commfault)

?y <- (tacan-status ?sys ?iru bearing commfault)

(tacan-flag ?sys commfault ?iru off)

(tacan-flag ?sys deselect ?iru ?desel-flag)

(tacan-fail-flag ?lru range ?range-fail)

(tacan-fail-flag ?iru bearing ?bearing-fail)

(prev-string-cf ?sys ?iru ?string-flag)

(tacan-lru-quality ?iru range ?range-status)

(tacan-lru-quality ?iru bearing ?bearing-status)

=>

(if (eq ?string-flag off)
then

(assert (event tacan off-nominal alt
"Commfault clear on TACAN " ?iru " in the " ?sys)))

(assert (tacan-status-changed))

(retract ?x)

(retract ?y)

(if (eq ?desel-flag on)
then

(assert (status-light tacr ?lru deselect))

(assert (status-light tacb ?Iru deselect))

(assert (tacan-status ?sys ?Iru range deselect))

(assert (tacan-status ?sys ?iru bearing deselect))

else

(if (eq ?range-fail on)
then

(assert

(assert
else

(assert

(assert

(status-light tacr ?iru fail))

(tacan-status ?sys ?lru range fail))

(status-light tacr ?Iru ?range-status))

(tacan-status ?sys ?lru range avail)))

(if (eq ?bearing-fail on)

then

(assert (status-light tacb ?Iru fail))

(assert (tacan-status ?sys ?lru bearing fail))

else

(assert (status-light tacb ?Iru ?bearing-status))

(assert (tacan-status ?sys ?iru bearing avail)))))

83

(defrule tacan-deselect

;;

;;
;;
;;
;;
;;

;;
_;;

;;
;;

IF

THEN

END

For the engaged system

A TACAN LRU has been available in either range
or bearing

The deselect flag for that LRU is on

Notify the operator of crew deselection

Conclude the LRU is unavailable in range and

bearing due to deselection

m

(sub-phase tacan availability)

(engaged-system ?sys)

?x <- (tacan-status ?sys ?iru range ?range-status)

?y <- (tacan-status ?sys ?iru bearing ?bearing-status)

(test (If (eq ?range-status avail) (eq ?bearing-status avail)))

(tacan-flag ?sys deselect ?iru on)
z>

(assert

(assert

(assert

(assert

(retract

(retract

(assert

(assert

(event tacan off-nominal alt

"Crew deselected TACAN " ?lru " in the " ?sys))

(status-light tacr ?iru deselect))

(status-light tacb ?iru deselect))

(tacan-status-changed))

?x)
?y)

(tacan-status ?sys ?iru

(tacan-status ?sys ?lru

range deselect))

bearing deselect)))

w f

(defrule tacan-power-off

m

;;
;;

;;
.._;;

;;

;;
;;

;;

IF

THEN

END

For the engaged system

A TACAN LRU was previously powered on

The power indicator for that LRU is now off

Notify the operator that the LRU has lost power

Conclude the LRU is not available due to loss of power

(sub-phase tacan availability)

(engaged-system ?sys)

?x <- (tacan-status ?sys ?iru

?y <- (tacan-status ?sys ?iru bearing

(tacan-flag ?sys power ?Iru off)

range -power-off)

power-off)

->

(assert (event tacan off-nominal alt

"TACAN " ?lru " has lost power"))

(assert (status-light tacr ?iru off))

(assert (status-light tacb ?iru off))

(assert (tacan-status-changed))

(retract ?x)

(retract ?y)

(assert (tacan-status ?sys ?iru

(assert (tacan-status ?sys ?iru

range power-off))

bearing power-off)))

84

(de frule

;; IF

;;

;;

;; THEN

;;

;;

;;

;; END

w

tacan-power-on

For the engaged system

A TACAN LRU was previously powered off

The power indicator for that LRU is now on

Notify the operator that the LRU has been powered on

Conclude the LRU has the status indicated by the fail
and deselect indicators

(sub-phase tacan availability)

(engaged-system ?sys)

?x <- (tacan-status ?sys ?iru range power-off)

?y <- (tacan-status ?sys ?iru bearing power-off)

(tacan-flag system power ?iru on)

(tacan-flag ?sys deselect ?iru ?desel-flag)

(tacan-fail-flag ?iru range ?range-fail)

(tacan-fail-flag ?Iru bearing ?bearing-fail)

(tacan-lru-quality ?iru range ?range-status)

(tacan-lru-quality ?iru bearing ?bearing-status)
=>

(assert (event tacan off-nominal alt

"TACAN " ?Iru " has been powered on"))

(assert (tacan-status-changed))

(retract ?x)

(retract ?y)

(if (eq ?desel-flag on)
then

(assert (status-light tacr ?iru

(assert (status-light tacb ?Iru

(assert (tacan-status ?sys ?Iru

(assert (tacan-status ?sys ?Iru
else

(if (eq ?range-fail on)
then

(assert (status-light tacr ?iru

(assert (tacan-status ?sys ?iru
else

(assert (status-light tacr ?iru

(assert (tacan-status ?sys ?iru

(if (eq ?bearing-fail on)
then

(assert (status-light tacb ?lru

(assert (tacan-status ?sys ?iru
else

(assert (status-light tacb ?iru

(assert (tacan-status ?sys ?iru

deselect))

deselect))

range deselect))

bearing deselect))

fail))

range fail))

?range-status))

range avail)))

fail))

bearing fail))

?bearing-status))

bearing avail)))))

(defrule tacan-failed

;;

;;

;;

;;

IF

THEN

For the engaged system
A TACAN LRU measurement was available

The fail flag for that measurement is on

85

w

;;

/;

/;

Notify the operator of the failure

Conclude that the measurement is no longer available
due to failure

END

(sub-phase tacan availability)

(engaged-system ?sys)

?x <- (tacan-status ?sys ?Iru ?measurement avail)

(tacan-fail-flag ?iru ?measurement on)

(measurement-name ?name&tacrltacb ?measurement)
=>

(assert (event tacan off-nominal alt

"TACAN " ?lru " " ?measurement " failed by RM"))

(assert (status-light ?name ?iru fail))

(assert (tacan-status-changed))

(retract ?x)

(assert (tacan-status ?sys ?iru ?measurement fail)))

l

w

(defrule tacan-reselected

,;

,;

,;

,;

,;

_--;;

;;

;;

IF

THEN

END

For the engaged system
A TACAN LRU has been unavailable due to

failure or deselect

The deselect flag for that LRU is off

Both fail flags for that LRU are off

Notify the operator of crew reselection

Conclude the LRU is now available in range and

bearing

m

w

(sub-phase tacan availability)

(engaged-system ?sys)

?x <- (tacan-status ?sys ?iru range ?range-status)

?y <- (tacan-status ?sys ?Iru bearing ?bearing-status)
(test (If (eq ?range-status fail)

(eq ?bearing-status fail)

(eq ?range-status deselect)

(eq ?bearing-status deselect)))

(tacan-flag ?sys deselect ?iru off)

(tacan-fail-flag ?iru range off)

(tacan-fail-flag ?iru bearing off)

(tacan-lru-quality ?iru range ?range-quality)

(tacan-lru-quality ?Iru bearing ?bearing-quality)
->

(assert (event tacan off-nominal alt

"Crew reselected TACAN " ?iru " in the " ?sys))

(assert (status-light tacr ?lru

(assert (status-light tacb ?lru

(assert (tacan-status-changed))

(retract ?x)

(retract ?y)

(assert (tacan-status ?sys ?iru

(assert (tacan-status ?sys ?iru

?range-quality))

?bearing-quality))

range avail))

bearing avail)))

86

(defrule

;; IF

;;

[;;

; ; THEN

i__ ; ; END

tacan-locked

For the engaged system

No LRUs were previously locked on
An LRU is locked on a measurement

Notify the operator that TACAN is locking on

(sub-phase tacan availability)

?x <- (prev-tacan-lock ?measurement off)

(tacan-lock ?Iru ?measurement on)
=>

(assert (event tacan nominal alt

"TACAN " ?iru " is locking onto " ?measurement))

(assert (tacan-status-changed))

(retract ?x)

(assert (prev-tacan-lock ?measurement on)))

(defrule tacan-no-locked

;;

;;

;;

;;

;;

IF

THEN

END

An LRU was previously locked on a measurement
No LRU is locked on a measurement

Nofity the operator that TACAN lost lock

(sub-phase tacan availability)

?x <- (prev-tacan-lock ?measurement on)

(tacan-lock 1 ?measurement off)

(tacan-lock 2 ?measurement off)

(tacan-lock 3 ?measurement off)
=>

(assert (event tacan nominal alt

"TACAN lost lock on " ?measurement))

(assert (tacan-status-changed))

(retract ?x)

(assert (prev-tacan-lock ?measurement off)))

/;

-- ;;;

;;

;;

;;

;;;

;

;;

;;;

;;

;;

GROUP

TACAN LRU Quality (3.8.3)

This group checks LRU measurement errors to determine which LRUs

have a problem and what the problem is.

CONTROL FACTS

(sub-phase tacan quality)

CONTAINING GROUP

TACAN

87

-- (defrule tacan-cone-of-confusion-on-ignore-bearing

;;

;;

IF

In the cone of confusion

THEN

Ignore bearing measurements

=>

(declare (salience i0))

(sub-phase tacan quality-rating)

(cone on)

(assert (temporary-rating 1 bearing none))

(assert (temporary-rating 2 bearing none))

(assert (temporary-rating 3 bearing none)))

_ (defrule tacan-no-quality-due-to-channel-change

;;

;;

;;

IF

An LRU is tuned to a different channel than it was previously
THEN

That LRU has no quality rating for range or bearing

->

(declare (salience i0))

(sub-phase tacan quality-rating)

(tacan-channel ?iru ?channel)

?x <- (prev-tacan-channel ?iru -?channel)

(retract ?x)

(assert (temporary-rating ?iru bearing none))

(assert (temporary-rating ?Iru range none))

(assert (prev-tacan-channel ?iru ?channel)))

m

=>

defrule tacan-use-gnd-minus-ob-errors

IF

The HSTD is good
THEN

The selected errors for each measurement are the

GND-Onboard errors

(declare (salience 9))

(sub-phase tacan quality-rating)

(hstd good)

(tacan-error ?iru ?measurement slope ?status-s)

(tacan-error ?iru ?measurement bias ?status-b)

(tacan-error ?iru ?measurement noise ?status-n)

(assert (selected-tacan-error ?iru ?measurement slope ?status-s))

(assert (selected-tacan-error ?iru ?measurement bias ?status-b))

(assert (selected-tacan-error ?iru ?measurement noise ?status-n)))

(defrule tacan-use-relative-errors

88

;;

;;
;;

=>

IF

The HSTD is not good
THEN

The selected errors for each measurement are the relative

errors

(declare (salience 9))

(sub-phase tacan quality-rating)
(hstd good)

(rel-tac ?pair-a ?measurement ?error ?status-a)

(rel-tac ?pair-b&-?pair-a ?measurement ?error ?status-b)

(common-lru ?pair-a ?pair-b ?iru)

(min-miscompare ?status-a ?status-b ?best-status)

(not (selected-tacan-error ?iru ?measurement ?error ?))

(assert (selected-tacan-error ?lru ?measurement ?error

?best-status)))

(defrule tacan-no-quality-rating-part-1

I f

;;

;;

;;

;;

=>

IF

The hstd is good

For the engaged system

A TACAN LRU is commfaulted or unlocked in the measurement
THEN

Set temporary rating to NONE

(declare (salience 8))

(sub-phase tacan quality-rating)

(hstd good)

(engaged-system ?sys)

(or (tacan-status ?sys ?iru ?measurement commfault)

(tacan-lock ?iru ?measurement off))

(not (temporary-rating ?iru ?measurement ?))

(assert (temporary-rating ?iru ?measurement none)))

; f

(defrule tacan-no-quality-rating-part-2

;;

;;

;;

;;

;;

;;

;;

IF

The HSTD is not good

For the engaged system
A measurement from LRU A is commfaulted or unlocked

The same measurement from LRU B is commfaulted or unlocked

THEN

Set temporary rating to none

(declare (salience 8))

(sub-phase tacan quality-rating)

(engaged-system ?sys)
(hstd good)

(or (tacan-status ?sys ?iru-a ?measurement commfault)

(tacan-lock ?Iru-a ?measurement off))

(or (tacan-status ?sys ?iru-b&~?iru-a ?measurement commfault)

(tacan-lock ?iru-b&-?iru-a ?measurement off))

89

=>

(irus-in-pair ?pair ?iru-a ?iru-b)

(excluded-lru ?pair ?iru-desired)

(not (temporary-rating ?iru-desired ?measurement ?))

(assert (temporary-rating ?lru-desired ?measurement none)))

(defrule tacan-temporary-quality-for-noise-bias-slope

;;

;;

;;

;;

_ ;;

IF

An LRU has a particular rating based on considering

selected errors of noise, bias, and slope
THEN

Conclude that the LRU has that rating

(declare (salience 7))

(sub-phase tacan quality-rating)

(selected-tacan-error ?iru ?measurement slope ?s-quality)

(selected-tacan-error ?iru ?measurement bias ?b-quality)

(selected-tacan-error ?lru ?measurement noise ?n-quality)

(not (temporary-rating ?iru ?measurement ?))

(tacan-quality ?s-quality ?b-quality ?n-quality ?total-quality)

(assert (temporary-rating ?lru ?measurement ?total-quality)))

(defrule tacan-determine-lru-rating-part-i

;;

;;

;;

m

-_>

IF

HSTD is good
THEN

Measurement rating = temporary rating

Potential dilemma flag = off

(declare (salience 6))

(sub-phase tacan quality)

(hstd good)

?x <- (temporary-rating ?iru ?measurement ?rating)

(retract ?x)

(assert (tacan-lru-quality ?lru ?measurement ?rating))

(assert (potential-dilemma-flag ?iru ?measurement off)))

; f

(defrule tacan-determine-lru-rating-part-2

;;

-- ;;

;;

;;

;;

;;

;;

;;

IF

For the engaged system

The HSTD is not good
All three measurements available and locked

THEN

A's measurement rating = better rating (of good,

suspect, or bad) between temporary ratings for
AB and AC's relative errors

Potential dilemma flag = off

(declare (salience 6))

90

w

-- =>

(sub-phase tacan quality)

(engaged-system ?sys)

(hstd Ngood)

(tacan-status ?sys ?Iru-a ?measurement avail)

(tacan-lock ?iru-a ?mea'surement on)

(tacan-status ?sys ?iru-b&-?iru-a ?measurement avail)

(tacan-lock ?iru-b ?measurement on 1
(tacan-status ?sys ?iru-c&-?iru-b& ?Iru-a ?measurement avail)

(tacan-lock ?iru-c ?measurement on)

(irus-in-pair ?pair-ab ?Iru-a ?iru-b)

(irus-in-pair ?pair-ac ?iru-a ?iru-c)

(temporary-rating ?iru-b ?measurement ?rating-b)

(temporary-rating ?Iru-c ?measurement ?rating-c)

(min-compare ?rating-b ?rating-c ?best)

(not (potential-dilemma-flag ?iru-a ?measurement ?))

?x <- (tacan-lru-quality ?iru-a ?measurement ?)

(retract ?x)

(assert (tacan-lru-quality ?iru-a ?measurement ?best))

(assert (potential-dilemma-flag ?iru-a ?measurement off)))

v (defrule tacan-determine-lru-rating-part-3

i;

;;

;;

;;

-- ;;

;;

;;

;;

;;

IF

For the engaged system

The HSTD is not good
Two measurements are available and locked

Both measurement's previous ratings are equal
THEN

Measurement rating for both measurements = temporary

rating for their relative error

Set potential dilemma flag to ON
END

v

r_

v

=>

(declare (salience 6))

(sub-phase tacan quality)

(hstd -good)

(engaged-system ?sys)

(tacan-status ?sys ?iru-a ?measurement avail)

(tacan-lock ?iru-a ?measurement on)

(tacan-status ?sys ?iru-b&-?iru-a ?measurement avail)

(tacan-lock ?iru-b ?measurement on)

(or (tacan-status ?sys ?iru-c&~?iru-b&-?Iru-a ?measurement -avail)

(tacan-lock ?Iru-c&~?iru-b&~?iru-a ?measurement off))

?x <- (tacan-lru-quality ?iru-a ?measurement ?rating-a)

?y <- (tacan-lru-quality ?iru-b ?measurement ?rating-a)

(not (potential-dilemma-flag ?iru-a ?measurement ?))

(not (potential-dilemma-flag ?iru-b ?measurement ?))

(temporary-rating ?iru-a ?measurement ?trating-a)

(temporary-rating ?iru-b ?measurement ?trating-b)

(retract ?x ?y)

(assert (tacan-lru-quality ?iru-a ?measurement ?trating-a))

(assert (tacan-lru-quality ?iru-b ?measurement ?trating-b))

(assert (potential-dilemma-flag ?iru-a ?measurement on))

(assert (potential-dilemma-flag ?Iru-b ?measurement on)))

w gl

(defrule tacan-determine-lru-rating-part-4

;;

;;

;;

;;

;;

;;

;;

_;;

;;

;;

;;

;;

IF

For the engaged system

The HSTD is not good

Two measurements (A + B) are available and locked

Measurement A previous rating is better than

measurement B previous rating
THEN

Set measurement A rating = previous measurement A

rating

Set measurement B rating = temporary rating for the
AB relative error

Set potential dilemma flag to OFF
END

=>

(declare (salience 6))

(sub-phase tacan quality)
(hstd good)

(engaged-system ?sys)

(tacan-status ?sys ?iru-a ?measurement avail)
(tacan-lock ?Iru-a ?measurement on)

(tacan-status ?sys ?iru-b&-?iru-a ?measurement avail)

(tacan-lock ?iru-b ?measurement on)

(or (tacan-status ?sys ?iru-c&-?iru-b&-?iru-a ?measurement -avail)

(tacan-lock ?iru-c&-?iru-b&~?iru-a ?measurement off))

(tacan-lru-quality ?iru-a ?measurement ?rating-a)

?x <- (tacan-lru-quality ?Iru-b ?measurement ?rating-b)

(min-miscompare ?rating-a ?rating-b ?rating-a)

(not (potential-dilemma-flag ?iru-a ?measurement ?))

(not (potential-dilemma-flag ?iru-b ?measurement ?))

(temporary-rating ?iru-b ?measurement ?status-rel)

(retract ?x)

(assert (tacan-lru-quality ?lru-b ?measurement ?status-rel))

(assert (potential-dilemma-flag ?iru-a ?measurement off))

(assert (potential-dilemma-flag ?iru-b ?measurement off)))

_(defrule tacan-determine-lru-rating-part-5

m

--;;

;;

-;;

;;

;;

_;;

;;

;;

IF

For the engaged system

The HSTD is not good

Only measurement A is available and locked

Measurement A's previous rating - none

A's raw data noise (spread) is greater than 1/2
RM threshold

THEN

A's measurement rating for = Noise

Set potential dilemma flag to OFF
END

(declare (salience 6))

(sub-phase tacan quality)

(hstd good)

(engaged-system ?sys)

=>

(tacan-status ?sys ?lru-a ?measurement avail)
(tacan-lock ?iru-a ?measurement on)
(or (tacan-status ?sys ?iru-b&-?iru-a ?measurement -avail)

(tacan-lock ?Iru-b&-?Iru-a ?measurement off))

(or (tacan-status ?sys ?iru-c&-?iru-b&-?iru-a ?measurement -avail)

(tacan-lock ?iru-c&-?Iru-b&-?iru-a ?measurement off))

?x <- (tacan-lru-quality ?iru-a ?measurement none)

(selected-error ?iru-a ?measurement noise o501over)

(retract ?x)

(assert (tacan-lru-quality ?iru-a ?measurement noise))

(assert (potential-dilemma-flag ?iru-a ?measurement off)))

(defrule tacan-quality-rating-change

;; IF

;;

;; THEN

__- ;;

;; END

A measurement rating has changed

Notify the operator of the change and potential

dilemma condition based on the potential

dilemma flag status

J

=>

(declare (salience 5))

(sub-phase tacan quality)

?x <- (last-tacan-quality ?iru-a ?measurement ?old)

(tacan-lru-quality ?iru-a ?measurement ?new&-?old)

(potential-dilemma-flag ?Iru-a ?measurement ?flag)

(measurement-name ?name&tacrltacb ?measurement)

(retract ?x)

(assert (last-tacan-quality ?iru-a ?measurement ?new))
(assert (event tacan off-nominal alt

"Tacan " ?Iru-a ?measurement

" quality has changed from " ?old " to " ?new))

(assert (status-light ?name ?iru-a ?new))

(if (eq ?flag on)
then

(assert (event tacan off-nominal alt
"ONAV can't determine which TACAN LRU"

" caused the TACAN " ?iru-a " "

?measurement " quality change"))))

(defrule tacan-dilemma-cleanup

=>

(declare (salience 4))

(sub-phase tacan clean-up)

?x <- (potential-dilemma-flag ? ? ?)

(retract ?x))

w

98

(defrule tacan-temporary-rating-cleanup

(declare (salience 4))

(sub-phase tacan clean-up)

?x <- (temporary-rating ? ? ?)

=>

(retract ?x))

;;;

;;

;;

;;

;;

;;

;;;

;;

;;;

_.- ;;

;;

GROUP

TACAN Filter Flag Changes (3.8.4)

This group watches for changes in the TACAN data-good flags and

filter flags.

CONTROL FACTS

(sub-phase tacan

CONTAINING GROUP

TACAN

watch-flags)

(defrule tacan-filter-flag-changed

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

For the engaged system

The current value of a TACAN filter flag is anything but
off AND

The value of the flag is different from its previous value

Note the new value

Notify the operator if the new value is "process"

m

v

(sub-phase tacan watch-flags)

(engaged-system ?sys)

(filter-flag ?sys ?meas&tacrltacb ?flag&-off)

?x <- (prev-filter-flag ?sys ?meas ?flag)

(measurement-name ?meas ?measurement)
=>

(retract ?x)

(assert (prey-filter-flag ?sys ?meas ?flag))

(if (eq ?flag process)
then

(assert (event tacan nominal alt

"Processing TACAN " ?measurement))))

(defrule tacan-end-measurement-processing

. ;; IF

;; For the engaged system

_ ;; The current value of a TACAN filter flag is off

;; The previous value is not off AND

AND

v 94

;;

;;

THEN

END

Either

The corresponding data good flag is off

MSBLS is being processed

Conclude and indicate that the processing of
TACAN measurement has ended

OR

(sub-phase tacan watch-flags)

(engaged-system ?sys)

(filter-flag ?sys ?meas&tacrltacb off)

?x <- (prev-filter-flag ?sys ?meas -off)

(measurement-name ?meas ?measurement)

(or (data-good ?sys ?meas off)

(filter-flag ?sys mlsrlmlsalmlse
=>

(retract ?x)

(assert (prey-filter-flag ?sys ?meas

(assert (event tacan nominal alt

(assert

(assert

(assert

processledit))

off))

"TACAN " ?measurement " processing turned off "))

(status-light ?meas 1 off))

(status-light ?meas 2 off))

(status-light ?meas 3 off)))

(defrule tacan-data-good-flag-changed

;;

_- ;;

;;

;;

IF

THEN

END

For the engaged system

The current value of a TACAN data-good flag is different from

its previous value

Notify the operator of the new value

v

=--=

(sub-phase tacan watch-flags)

(engaged-system ?sys)

(data-good ?sys ?meas&tacrltacb ?flag)

?x <- (prey-data-good ?sys ?meas ?flag)

(measurement-name ?meas ?measurement)
=>

(retract ?x)

(assert (prev-data-good ?sys ?meas ?flag))
(assert (event tacan nominal alt

"TACAN " ?measurement " data-good flag is " ?flag)))

(defrule tacan-dilemma-occurred

IF

THEN

END

;;
;;

;;

;;

f !

;;

For the engaged system

TACAN dilemma flag is on for either measurement

Warn the operator that a TACAN dilemma ocurred

(sub-phase tacan watch-flags)

(engaged-system ?sys)

95

v

(tacan-dilemma ?measurement on)
=>

(assert (event tacan off-nominal alt

"TACAN " ?measurement " is in dilemma")))

! r

v;;

;

;;;

;;

;;

GROUP

Toggle Tacan Recommendations (3.8.5)

This group determines whether or not the TACAN ground station has

a problem. If so, and if a backup is available, then toggling
is recommended.

CONTROL FACTS

(sub-phase tacan toggle)

CONTAINING GROUP

TACAN

(defrule tacan-gnd-station-problem-I

;; IF

;;

;;

;; THEN

;;

;;

;; END

For the engaged system

At least 2 LRUs are locked onto the same measurement

All locked LRUs are exhibiting the same problem

AND

Conclude the ground station has a problem and a toggle
is needed

(sub-phase tacan toggle)

(engaged-system ?sys)

(tacan-lock ?Iru-a ?measurement on)

(tacan-lru-quality ?iru-a ?measurement
(tacan-lock ?Iru-b&-?iru-a ?measurement

(tacan-lru-quality ?iru-b ?measurement

(or

?status&noiselbias)

on)

?status)

(tacan-lock ?Iru-c ?measurement off)

(tacan-status ?sys ?iru-c&-?iru-a&-?iru-b ?measurement -avail)

(and (tacan-lock ?iru-c&-?iru-b&~?iru-a ?measurement on)

(tacan-status ?sys ?iru-c ?measurement avail)

(tacan-lru-quality ?iru-c ?measurement ?status)))
=>

(assert

(assert

(event tacan off-nominal alt
"All locked TACAN LRUs have a " ?measurement

" " ?status))

(need-a-toggle)))

-- (defrule tacan-gnd-station-problem-2

;;

_;;

;;

IF

For the engaged system
Only 1 LRU is available AND

w

9G

;/

w

v ;

THEN

END

That LRU is locked AND

That LRU has an error

Notify the operator that the ground station has a problem

Conclude a toggle is needed

(sub-phase tacan toggle)

(engaged-system ?sys)

(tacan-status ?sys ?iru-a ?measurement avail)

(tacan-lock ?iru-a ?measurement on)

(tacan-lru-quality ?iru-a ?measurement ?status&noiselbias)

(tacan-status ?sys ?iru-b ?measurement -avail)

(tacan-status ?sys ?iru-c&-?iru-b ?measurement -avail)
=>

(assert (event tacan off-nominal alt

"locked LRU has a " ?measurement " " ?status))

(assert (need-a-toggle)))

(defrule tacan-one-locked-at-130k

! f

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

Only one LRU is locked AND
That LRU has an error AND

The altitude is less than 130 kft and greater than 5 kft

Notify the operator that the ground station has a problem

Conclude a toggle is needed

w

(sub-phase tacan toggle)

(tacan-lock ?iru-a ?measurement on)

(tacan-lru-quality ?iru-a ?measurement

(tacan-lock ?iru-b ?measurement off)
(tacan-lock ?iru-c&-?iru-b ?measurement

(altitude ?alt)

(test (< ?alt 130000))

(test (> ?alt 5000))
=>

(assert (event tacan off-nominal alt

(assert

?status&noiselbias)

off)

"locked LRU has a " ?measurement " " ?status

" at altitude less than 130k ft"))

(need-a-toggle)))

(defrule tacan-none-locked-at-130k

IF

THEN

END

;;

;;

;;

No LRUs are locked AND

The altitude is less than 130 kft and greater than 5 kft

Notify the operator that the ground station has a problem

Conclude a toggle is needed

(sub-phase tacan toggle)
(tacan-lock 1 ?measurement off)

97

v

(tacan-lock 2 ?measurement off)

(tacan-lock 3 ?measurement off)

(altitude ?alt)

(test (< ?alt 130000))

(test (> ?alt 5000))
=>

(assert (event tacan off-nominal alt

"No LRU's are locked in " ?measurement

" at altitude less than 130k ft"))

(assert (need-a-toggle)))

v (defrule tacan-do-a-toggle

;; IF

;;

;; THEN

;;

;; END

A toggle is needed AND

Toggle capability is available

Request a toggle

v

?x <- (need-a-toggle)

(toggle-available yes)

(desired-tacan ?current-slot)

(same-area ?current-slot ?new-slot)
_>

(bind ?channel (lookup-tacan ?new-slot))

(retract ?x)

(assert (recommend tacan toggle off-nominal

"Need" " to toggle TACAN to " ?channel

" please confirm")))

alt

!

v

(de frule tacan-dont-do-a-toggle

_ ;;

;;

;;

;;

_ ;;

;;

IF

THEN

END

A toggle is needed AND

Toggle capability is not available

Don't do the toggle

?X <- (need-a-toggle)

(toggle-available no)
=>

(retract ?x))

;;

w ;;;

;;

! f

;;;

;
;;

GROUP

LRU's for Deselect (3.8.6.1)

This group looks at problems with the LRUs to determine which

ones might need to be deselected.

CONTROL FACTS

(sub-phase tacan deselect)

98

;;; CONTAINING GROUP
;; Deselect TACAN LRU

• (defrule tacan-kill-old-suggestion

;;

;;

! I

;;

;;

;;

IF

THEN

END

TACAN status has changed AND

Part of an old deselect suggestion still exists

Remove that part of the deselect suggestion

(declare (salience i0))

(sub-phase tacan deselect)

(tacan-status-changed)

?x <- (suggested-deselect $?)
=>

(retract ?x))

(defrule tacan-dsel-prep-done

;;

;;

_ ;;

_- ;;

IF

THEN

END

TACAN status has changed AND

No previous deselect suggestion exists

Remove the note about the TACAN status changing

(declare (salience i0))

(sub-phase tacan deselect)

?x <- (tacan-status-changed)

(not (suggested-deselect $?))
=>

(retract ?x))

(defrule

;; IF

;;

;;

;;

;;

;; THEN

;!

;; END

tacan-dilemma

For the engaged system
TACAN RM is in dilemma AND

One LRU is known to be bad AND

Another LRU is known to be good

Try deselecting the bad LRU

m

(sub-phase tacan deselect)

(engaged-system ?sys)

(tacan-dilemma ?measurement on)

(tacan-status ?sys ?iru-a ?measurement avail)

(tacan-lru-quality ?iru-a ?measurement noiselbias)

(tacan-status ?sys ?iru-b&~?iru-a ?measurement

(tacan-lru-quality ?iru-b ?measurement good)
=>

(assert (need-to-deselect ?iru-a)))

9 9

avail)

!

(defrule tacan-two-against-one

-- ;;

;;

;;

v

;;

;;

k ;;

;;

IF

THEN

END

Two LRUs have a problem AND

The third LRU is good AND

The problem with the two bad LRUs is such that TACAN RM

may fail the good LRU

Try deselecting the two bad LRUs

(sub-phase tacan deselect)

(tacan-lru-quality ?lru-a ?measurement bias)
(tacan-lru-quality ?iru-b&-?iru-a ?measurement

(tacan-lru-quality ?iru-c ?measurement good)

(irus-in-pair ?pair ?iru-a ?lru-b)

(rel-tac ?pair ?measurement bias under)
=>

(assert (need-to-deselect ?iru-a))

(assert (need-to-deselect ?iru-b)))

bias)

v (defrule tacan-not-2-1ocked

;;

;;

_ ;;

;;

;;

L ;;

;;

;;

;;

IF

THEN

END

For the engaged system
2 LRUs are not locked AND

1 LRU is locked AND

The data good flag is off AND

The altitude is less than 130 kft and greater than 5 kft

Try deselecting the 2 unlocked LRUs

(sub-phase tacan deselect)

(engaged-system ?sys)

(tacan-lock ?Iru-a ?measurement off)

(tacan-lock ?iru-b&-?iru-a ?measurement off)

(tacan-lock ?iru-c ?measurement on)

(tacan-lru-quality ?iru-c ?measurement good)

(measurement-name ?meas&tacrltacb ?measurement)

(data-good ?sys ?meas off)

(altitude ?alt)

(test (< ?alt 130000))

(test (> ?alt 5000))
->

(assert (need-to-deselect ?Iru-a))

(assert (need-to-deselect ?iru-b)))

-- (defrule tacan-noisy-lru

;; IF

__-;;
;; THEN

An LRU has excessive noise

i00

;; Try deselecting that LRU
;; END

(sub-phase tacan deselect)

(tacan-lru-quality ?iru ?measurement
=>

(assert (need-to-deselect ?iru)))

noise)

(de frule tacan-rm- failed-wrong-lru

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

For the engaged system

One LRU has a problem AND

Another LRU is good AND

TACAN RM has failed the good one

Try deselecting the bad one

(sub-phase tacan deselect)

(engaged-system ?sys)

(tacan-lru-quality ?iru-a ?measurement biaslnoise)

(tacan-status ?sys ?iru-b&-?iru-a ?measurement fail)

(tacan-lru-quality ?Iru-b ?measurement good)
=>

(assert (need-to-deselect ?iru-a)))

(defrule

;; IF

;;

;;

;;

;; THEN

;;

;; END

tacan-deselect-the-lru-due-to-no-go

The selected measurement from RM is not good

enough to go for tacan

Deselecting an LRU will remedy the situation

Recommend deselection of the LRU

(sub-phase tacan deselect)

(tacan-error ?lru-a ?measurement raw over)

(tacan-lock ?iru-a ?measurement on)

(tacan-error ?irub&~?iru-a ?measurement raw under)

(tacan-lock ?iru-b ?measurement on)

(not (need-to-deselect ?iru-a))
=>

(assert (need-to-deselect ?iru-a)))

-- ;;; GROUP

;; Deselect Configurations (3.8.6.2)

;;

_ ;; This group takes the initial suggestions from the previous group
;; and determines which deselect combinations should be tried. Each

10.l

! f !

;;
;;

combination is proposed as a separate configuration.

up to seven possible combinations.

There are

CONTROL FACTS

(sub-phase tacan deselect)

CONTAINING GROUP

Deselect TACAN LRU

(defrule tacan-try-zero-deselects

;;

;;

;;

_ ;;

;;

;;

IF

THEN

END

Any LRUs have been proposed for deselection

Propose a configuration where no LRUs are deselected

(i.e. the onboard configuration is left like it is)

%.--

(sub-phase tacan deselect)

tneed-to-deselect $?)
:>

(bind ?config (gensym))

(assert (number-deselected ?config 0))

(assert (possible-tacan-configuration ?config

(assert (possible-tacan-configuration ?config

(assert (possible-tacan-configuration ?config

i off))

2 off))

3 off)))

(defrule tacan-try-one-deselect

;;

w;;

;;

;;

_;;
;;

IF

THEN

END

An LRU has been proposed for deselection

Propose a configuration where that LRU is the only one
deselected

(sub-phase tacan deselect)

(need-to-deselect ?iru-a)

(irus-in-pair _ ?Iru-a ?iru-b)~
(irus-in-pair _ ?iru-a ?iru-c& ?iru-b)
=>

(bind ?config (gensym))

(assert (number-deselected ?config i))

(assert (possible-tacan-configuration ?config

(assert (possible-tacan-configuration ?config

(assert (possible-tacan-configuration ?config

?iru-a on))

?iru-b off))

?iru-c off)))

(defrule tacan-try-two-deselects

;;

_;;

;;

;;

-v;;
;;

IF

THEN

For the engaged system

An LRU has been proposed for deselection AND

Another LRU is not commfaulted, deselected, or powered off

Propose a configuration where both LRUs are deselected

102

v

END

(sub-phase tacan deselect)

(engaged-system ?sys)

(need-to-deselect ?iru-a)

(irus-in-pair _ ?iru-a ?Iru-b)_

(irus-in-pair _ ?Iru-a ?Iru-c& ?iru-b)

(tacan-status ?sys ?iru-b range -commfault&-deselect&-power-off)
=>

(bind ?config (gensym))

(assert (number-deselected ?config 2))

(assert (possible-tacan-configuration ?config ?iru-a on))

(assert (possible-tacan-configuration ?config ?iru-b on))

(assert (possible-tacan-configuration ?config ?iru-c off)))

v

w

r

(de,rule tacan-eliminate-duplicate-configurations

;; IF

;; Two proposed configurations are identical
;; THEN

;; Eliminate one of the proposed configurations
;; END

(declare (salience 5))

(sub-phase tacan deselect)

?xl <- (possible-tacan-configuration

?x2 <- (possible-tacan-configuration

?x3 <- (possible-tacan-configuration

?x4 <- (number-deselected ?config-a

(possible-tacan-configuration

(possible-tacan-configuration

(possible-tacan-configuration
=>

(retract ?xl ?x2 ?x3 ?x4))

?config-a 1

?config-a 2

?config-a 3

ST)~
?config-b& ?config-a 1

?config-b 2 ?dsel-2)

?config-b 3 ?dsel-3)

?dsel-l)

?dsel-2)

?dsel-3)

?dsel-l)

;;

;;;

;;

_ ;;

;;

;;

;;

;;

;;

;;

I I ;

w ;;

;;

GROUP

Predict Availability and Configuration Data (3.8.6.3 & 3.8.6.4)

This group of rules predicts how TACAN RM will respond to a proposed

deselection configuration. This prediction consists of the bias

and noise on the selected range and bearing measurements, the range

and bearing data good flags, and the range and bearing dilemma
indicators.

CONTROL FACTS

(sub-phase tacan deselect)

CONTAINING GROUP

Deselect TACAN LRU

(de,rule tacan-predict-available

r

i03

,;

,;

i;

IF

THEN

END

For the engaged system

An LRU is not deselected in a proposed configuration
That LRU is available in the real world

AND

Predict that the LRU will be available in the proposed
configuration

(sub-phase tacan deselect)

(engaged-system ?sys)

(possible-tacan-configuration ?config ?iru off)

(tacan-status ?sys ?iru ?measurement avail)
=>

(assert (predicted-tacan status ?config ?iru ?measurement avail)))

I

_ (defru!e tacan-predict-not-available-1

;;

;;

_;;

;;

;;

IF

THEN

END

An LRU is deselected in a proposed configuration

Predict that the LRU will not be available in the proposed
configuration

(sub-phase tacan deselect)

(possible-tacan-configuration ?config ?iru on)
=>

(assert (predicted-tacan status ?config ?iru

(assert (predicted-tacan status ?config ?iru

range not-avail))

bearing not-avail)))

(defrule tacan-predict-not-available-2

;; IF

;;

;;

;;

;;

.-;;

THEN

END

For the engaged system
An LRU is not available in the real world

Predict that the LRU will not be available in any proposed

configuration

(sub-phase tacan deselect)

(engaged-system ?sys)

(possible-tacan-configuration ?config

(tacan-status ?sys ?iru ?measurement
=>

(assert

(predicted-tacan

?iru ?)

avail)

status ?config ?lru ?measurement not-avail)))

I

(defrule tacan-predict-data-good-two-locked

--_;; .IF

;; Two LRUs are available in a proposed configuration AND

104

THEN

END

Both LRUs are currently locked onto a measurement

Predict the data good flag for that measurement will be

on in the proposed configuration

(sub-phase tacan deselect)

(predicted-tacan status ?config

(predicted-tacan status ?config

(tacan-lock ?iru-a ?measurement

(tacan-lock ?Iru-b ?measurement
=>

(assert

?iru-a ?measurement avail)
?iru-b&~?iru-a ?measurement

on)

on)

avail)

(predicted-tacan data-good ?config ?measurement on)))

(defrule tacan-predict-data-good-one-locked

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

At least one LRU is available in a proposed configuration
That LRU is locked onto a measurement AND

The two-lock flag for that measurement is off

Predict the data good flag for that measurement will be

on in the proposed configuration

(sub-phase tacan deselect)

(predicted-tacan status ?config ?iru ?measurement avail)

(tacan-lock ?iru ?measurement on)

(two-lock-flag ?measurement off)
=>

(assert (predicted-tacan data-good ?config ?measurement on)))

AND

(defrule tacan-predict-data-good-one-avail

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

Only one LRU is available in a proposed configuration AND
That LRU is locked onto a measurement

Predict the data good flag for that measurement will be

on in the proposed configuration

(sub-phase tacan

(predicted-tacan

(predicted-tacan

(predicted-tacan

deselect)

status ?config ?iru-a ?measurement avail)

status ?config ?iru-b ?measurement not-avail)

status ?config ?iru-c&-?iru-b

?measurement not-avail)

on)(tacan-lock ?Iru-a ?measurement
=>

(assert (predicted-tacan data-good ?config ?measurement on)))

(defrule tacan-predict-data-good-off

;; IF

105

THEN

END

No rule has predicted the data good flag for a measurement

will be on in a proposed configuration

Predict the data good flag for that measurement will be off

in the proposed configuration

(declare (salience -i))

(sub-phase tacan deselect)

(predicted-tacan status ?config _ ?measurement ?)

(not (predicted-tacan data-good ?config ?measurement ?))
=>

(assert (predicted-tacan data-good ?config ?measurement off)))

-(defrule tacan-predict-dilemma

;;
;;

;;

;;

;;

. ;;

;;

IF

THEN

END

Exactly two LRUs are available and locked for a measurement

in a proposed configuration AND
The relative bias between the two LRUs exceeds the RM

threshold

Predict that RM will declare a dilemma in the proposed
configuration

(sub-phase tacan deselect)

(predicted-tacan status ?config
(tacan-lock ?iru-a ?measurement

(predicted-tacan status ?config

(tacan-lock ?Iru-b ?measurement on)

(irus-in-pair ?pair ?iru-a ?iru-b)

(excluded-lru ?pair ?iru-c)

(or (predicted-tacan status ?config ?iru-c

(tacan-lock ?iru-c ?measurement off))

(tacan-relative-difference ?pair ?measurement
=>

(assert

?iru-a ?measurement avail)

on)
N

?iru-b& ?iru-a ?measurement

?measurement

bias over)

avail)

not-avail)

(predicted-tacan dilemma ?config ?measurement on)))

!

(defrule

;; IF

;;

;;

--;; THEN

..;; END

tacan-predict-no-dilemma

No rule has yet predicted that RM will declare a dilemma

in a proposed configuration

Predict that RM will not declare a dilemma in the proposed

configuration

(declare (salience -I))

(sub-phase tacan deselect)

(predicted-tacan status ?config _ ?measurement ?)

(not (predicted-tacan dilemma ?config ?measurement ?))
=>

(assert (predicted-tacan dilemma ?config ?measurement off)))

106

(defrule tacan-predict-error-l-level

;;

;;

;;

;;

;;

I f

;;

;;

;;

IF

THEN

END

The data good flag is on for a measurement in a proposed

configuration AND
One LRU is available and locked AND

The other two LRUs are either unavailable or unlocked

Predict the selected measurement bias and noise is the

same as that of the available LRU

(sub-phase tacan deselect)

(predicted-tacan data-good ?config ?measurement on)

(predicted-tacan status ?config ?iru-a ?measurement

(tacan-lock ?iru-a ?measurement on)

(irus-in-pair _ ?iru-a ?Iru-b)_

(irus-in-pair _ ?iru-a ?iru-c& ?iru-b)

(or (predicted-tacan status ?config ?Iru-b

(tacan-lock ?iru-b ?measurement off))

(or (predicted-tacan status ?config ?iru-c

(tacan-lock ?iru-c ?measurement off))
=>

(bind

avail)

?measurement

?measurement

?bias (tacan-error ?iru-a ?measurement bias))

avail

avail

(assert (predicted-tacan bias ?config ?measurement ?bias))

(bind ?noise (tacan-error ?iru-a ?measurement noise))

(assert (predicted-tacan noise ?config ?measurement ?noise)))

(defrule tacan-predict-error-2-1evel

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

The data good flag is on for a measurement in a proposed

configuration AND
Two LRU's are available and locked AND

The other LRU is either unavailable or unlocked

Predict the selected measurement bias and noise is the

average of the available LRUs

(sub-phase tacan deselect)

(predicted-tacan data-good ?config ?measurement on)

(predicted-tacan status ?config ?iru-a ?measurement avail)

(tacan-lock ?iru-a ?measurement on)

(predicted-tacan status ?config ?iru-b&-?iru-a ?measurement

(tacan-lock ?Iru-b ?measurement on)

(lrus-in-pair ?pair ?iru-a ?Iru-b)

(excluded-lru ?pair ?Iru-c)

(or (predicted-tacan status ?config ?Iru-c ?measurement

(tacan-lock ?iru-c ?measurement off))
=>

(bind ?bias-a (tacan-error ?Iru-a ?measurement bias))

(bind ?bias-b (tacan-error ?iru-b ?measurement bias))

(bind ?bias (/ (+ ?bias-a ?bias-b) 2.0))

(assert (predicted-tacan bias ?config ?measurement ?bias))

(bind ?noise-a (tacan-error ?iru-a ?measurement noise))

avail)

-avail)

r

107

(bind ?noise-b (tacan-error ?iru-b ?measurement noise))

(bind ?noise (/ (sqrt (+ (* ?noise-a ?noise-a)

(* ?noise-b ?noise-b))) 2.0))

(assert (predicted-tacan noise ?config ?measurement ?noise)))

(defrule tacan-predict-error-3-1evel

i f

;;

;;

;;

;;

;;

;;

I !

IF

THEN

END

The data good flag is on for a measurement in a proposed

configuration AND
All LRUs are available and locked for that measurement

Predict the selected measurement bias and noise is the

same as what is currently being selected by _M.

(sub-phase tacan deselect)

(predicted-tacan data-good ?config ?measurement on)

(predicted-tacan status ?config 1 ?measurement avail)

(tacan-lock 1 ?measurement on)

(predicted-tacan status ?config 2 ?measurement avail)

(tacan-lock 2 ?measurement on)

(predicted-tacan status ?config 3 ?measurement avail)

(tacan-lock 3 ?measurement on)
=>

(bind ?bias (tacan-error 0 ?measurement bias))

(assert (predicted-tacan bias ?config ?measurement ?bias))

(bind ?noise (tacan-error 0 ?measurement noise))

(assert (predicted-tacan noise ?config ?measurement ?noise)))

-- ;;

;;

;;

;;

;;;

_;;

;;;

;;

;;

;;; GROUP

Choose Best Configuration (3.8.6.5)

This group of rules compares proposed configurations and chooses

the one that should give the best performance

CONTROL FACTS

(sub-phase tacan deselect)

CONTAINING GROUP

Deselect TACAN LRU

-- (defrule

;; IF

;;

;;
-- ;; THEN

;;

;; END

tacan-dont-want-dilemma

A proposed configuration will result in
measurement

Veto that configuration

(sub-phase tacan deselect)

a dilemma in either

_ r

108

(predicted-tacan
=>

(assert (vetoed

dilemma ?config

?config)))

?measurement on)

(defrule tacan-need-range-data

;; IF

f;

;; THEN

;; END

A proposed configuration does not have range data

Veto that configuration

(sub-phase tacan deselect)

(predicted-tacan data-good
=>

(assert (vetoed ?config)))

?config range off)

(defrule tacan-dont-have-bearing

;; IF

;;

;; THEN

;;

;;

;;

;; END

w

A proposed configuration does not have bearing data

Assume the crosstrack state error under the proposed

configuration will be the same as the current
crosstrack state error

(sub-phase tacan deselect)

(predicted-tacan data-good ?config bearing off)
=>

(bind ?bearing-bias (/ (state-error pass w) 200.0))

(assert (predicted-tacan bias ?config bearing ?bearing-bias))

(assert (predicted-tacan noise ?config bearing 0.0)))

(defrule

;; IF

;;

;; THEN

;;

;;

;; END

=

v

tacan-predict-state-effect

A configuration has not been vetoed

Predict the effect of the proposed configuration on the
state error

(sub-phase tacan

(predicted-tacan range

(predicted-tacan range

(predicted-tacan bias ?config bearing

(predicted-tacan noise ?config bearing

(number-deselected ?config ?n-desel)

(not (vetoed ?config))
=>

(bind ?el ?range-bias)

(bind ?e2 ?range-noise)

(bind ?e3 (* 200.0 ?bearing-bias))

deselect)

bias ?config

noise ?config

?range-bias)

?range-noise)

?bearing-bias)

?bearing-noise)

10:)

(bind ?e4 (* 200.0

(bind ?e5 (* 5000.0

(bind ?effect (sqrt

(bind ?effect (+

(assert (predicted-tacan

?bearing-noise))

?n-desel))

(+ (* ?el Tel)

(* ?e2 ?e2)

(* ?e3 ?e3)

(* ?e4 ?e4))))

?effect ?e5))

state-effect ?config ?effect)))

(defrule

;; IF

;;

;; THEN

;; END

tacan-pick-smallest-state-effect

One configuration has a smaller predicted state error
than another

Veto the configuration with the larger state error

(sub-phase tacan deselect)

(predicted-tacan state-effect ?config-a

(predicted-tacan state-effect ?config-b
(test (< ?effect-a ?effect-b))
=>

(assert (vetoed ?config-b)))

?effect-a)

?effect-b)

(defrule tacan-select-a-configuration

;;

;;

;;

;;

IF

THEN

All configurations that are going to be vetoed have been
vetoed

Select the only one left as the chosen configuration

(declare (salience -2))

(sub-phase tacan deselect)

(predicted-tacan state-effect

(not (vetoed ?config))
=>

(assert (chosen-configuration

?config $?)

?config)))

(defrule tacan-confirm-a-deselect

v

;;

;;

;;

;;

;;

IF

THEN

END

An LRU is deselected in the chosen configuration

Confirm the deselect suggestion

(sub-phase tacan deselect)

(chosen-configuration ?config)

(possible-tacan-configuration ?config ?iru on)
=>

(assert (suggested-deselect ?Iru confirmed)))

110

(defrule tacan-deny-a-deselect

;;

;;

;;

;;

IF

THEN

END

The initial deselect determination suggested deselecting
an LRU AND

That LRU is not deselected in the chosen configuration

Deny the deselect suggestion

(sub-phase tacan deselect)

(chosen-configuration ?config)

(possible-tacan-configuration ?config ?iru

(need-to-deselect ?iru)
=>

(assert (suggested-deselect ?iru denied)))

off)

(de frule tacan-deselect-con firmed

_ ;; IF

;; THEN

;;

-- ;; END

A deselect suggestion has been confirmed

Send the recommendation to the operator

(declare (salience i))

(sub-phase tacan deselect)

(suggested-deselect ?iru confirmed)
->

(assert (recommend tacan deselect-tacan off-nominal

"Need to deselect TACAN LRU " ?Iru)))

alt

(defrule tacan-deselect-shortcut

;;

--;;

;;

;;

4;;
;;

IF

THEN

END

An LRU has been suggested for deselection AND

That suggestion has already been confirmed or denied

Withdraw the suggestion

(sub-phase tacan clean-up)

?x <- (need-to-deselect ?Iru)

(suggested-deselect ?Iru $?)
=>

(retract ?x))

l

v (defrule tacan-deselect-cleanup

;; IF

_ ;; All work on all deselects has been completed AND

;; A temporary fact generated during the deselect determination

- 111
--=

THEN

END

Remove

still exists

the fact

(sub-phase
?x

tacan clean-up)

<- (possible-tacan-configurationl

number-deselectedl

predicted-tacanl

vetoed I

chosen-configuration $?)
=>

(retract ?x))

;;

_;;;

;;

;;

=_;;

<: ; ;

GROUP

Reselect TACAN LRU (3.8.7)

determines when to recommend reselected a TACAN LRUThis group

CONTROL FACTS

(sub-phase tacan reselect)

CONTAINING GROUP

TACAN

(defrule tacan-reselect-a-tacan

;; IF

;;

;;

--;;

;;

;;

_; ; THEN

;;
END;;

For the engaged system

A TACAN LRU is unavailable in a measurement due to

RM-declared failure or deselect AND

The LRU is locked and good in range AND

The LRU is locked and good in bearing

Recommend reselecting the LRU

failldeselect)

(sub-phase tacan reselect)

(engaged-system ?sys)

(tacan-status ?sys ?iru ?measurement

(tacan-lock ?iru range on)

(tacan-lru-quality ?iru range good)

(tacan-lock ?Iru bearing on)

(tacan-lru-quality ?iru bearing good)
=>

(assert (recommend tacan reselect-tacan off-nominal alt

"Need to reselect TACAN LRU " ?iru " in the " ?sys)))

;;

_;; GROUP

_;; TACAN AIF Determination (3.8.8)

;;

112

llr

;;

This group of rules determines when the TACAN AIF switch should be

changed, and what the new value should be.

CONTROL FACTS

(sub-phase tacan aif-change)

CONTAINING GROUP

TACAN

(defrule tacan-selected-tacan-is-acceptable

;;

;;

;;

;;

;;

_. ;;

;;

IF

THEN

END

For the engaged system

The selected measurement was previously no-go

The measurement error from every available and locked LRU

is less than the corresponding state error AND

Change the selected measurement to "go"

(sub-phase tacan aif-change)

(engaged-system ?sys)

?x <- (selected-tacan ?measurement no-go)

(or (and (tacan-error 1 ?measurement raw

(or (and

(or (and

=>

(retract

(assert

(tacan-lock 1

(tacan-status

(tacan-lock 1

(tacan-status

(tacan-error

(tacan-lock 2

(tacan-status

(tacan-lock 2

(tacan-status

(tacan-error

(tacan-lock 3

(tacan-status
(tacan-lock 3

(tacan-status

under)

?measurement on)

?sys 1 ?measurement avail))

?measurement off)

?sys 1 ?measurement -avail))

2 ?measurement raw under)

?measurement on)

?sys 2 ?measurement avail))

?measurement off)

?sys 2 ?measurement -avail))

3 ?measurement raw under)

?measurement on)

?sys 3 ?measurement avail))

?measurement off)

?sys 3 ?measurement -avail))

?x)
(selected-tacan ?measurement go)))

(defrule tacan-selected-tacan-is-unacceptable

;; IF

;;

;;

;;

;;

;;

THEN

END

For the engaged system

The selected TACAN measurement was previously "go" AND

The error from any available and locked LRU is unacceptable

Change the selected measurement to "no-go"

(sub-phase tacan aif-change)

(engaged-system ?sys)

?x <- (selected-tacan ?measurement go)

(tacan-error ?iru ?measurement raw over)

118

(tacan-lock ?Iru ?measurement on)

(tacan-status ?sys ?iru ?measurement avail)
=>

(retract ?x)

(assert (selected-tacan ?measurement no-go)))

(defrule tacan-to-auto

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

The pass is engaged

Range and bearing data good flags are on AND

No toggle has been requested AND

No TACAN deselects have been recommended AND

No delta-state is in work AND

Selected range and bearing errors are acceptable

Range and bearing edit ratios are less than 1

TACAN is currently inhibited

Recommend that TACAN go to AUTO mode

(sub-phase tacan aif-change)

(engaged-system pass)

(data-good pass tacr on)

(data-good pass tacb on)

(not (need-a-toggle))

(not (suggested-deselect ? confirmed))

(not (need-delta-state $?))

(selected-tacan range go)

(selected-tacan bearing go)

(edit-ratio pass tacr under)

(edit-ratio pass tacb under)

(aif pass tacan inhibit)
=>

(assert (recommend tacan tacan-to-auto nominal alt

"TACAN" " is good and can be placed in AUTO")))

AND

AND

-- (defrule tacan-to-auto-no-bearing

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

The pass is engaged

Range data-good is on AND

Bearing data-good is off AND

No toggle has been requested AND

No TACAN deselects have been requested
No delta state is in work AND

Selected range error is acceptable AND

Range edit ratio is less than 1 AND

TACAN is currently inhibited

Recommend TACAN be put in AUTO

(sub-phase tacan aif-change)

(engaged-system pass)

(data-good pass tacr on)

AND

114

(data-good pass tacb off)

(not (need-a-toggle))

(not (suggested-deselect ? confirmed))

(not (need-delta-state $?))

(selected-tacan range go)

(edit-ratio pass tact under)

(aif pass tacan inhibit)
=>

(assert (recommend tacan tacan-to-auto nominal alt

"TACAN" " is good and can be placed in AUTO")))

(defrule tacan-to-auto-end-force

<_ ;;

;;

;;
;;

IF

THEN

END

The pass is engaged

TACAN is being forced AND

Range and bearing edit ratios are less than 1

Recommend TACAN be put in auto

(sub-phase tacan aif-change)

(engaged-system pass)

(aif pass tacan force)

(edit-ratio pass tacr under)

(edit-ratio pass tacb under)
=>

(assert (recommend tacan end-force nominal alt

"TACAN" " should be returned to AUTO")))

-- (defrule tacan-auto-after-update

;;

___ ;;
;;
;;

;;
;;

;;
;;

;;
;;
;;

;;

IF

THEN

END

For the engaged system

Range and bearing data-good flags are on AND

No toggle has been requested AND

No TACAN deselects have been requested AND
A delta-state is in work AND

Selected range and bearing errors are acceptable

TACAN is currently inhibited

AND

Recommend TACAN be put in AUTO after the delta-state

is complete

(sub-phase tacan aif-change)

(engaged-system ?sys)

(data-good ?sys tacr on)

(data-good ?sys tacb on)

(not (need-a-toggle))

(not (suggested-deselect ?

(need-delta-state $?)

(selected-tacan range go)

(selected-tacan bearing go)

(aif ?sys tacan inhibit)
=>

confirmed))

115

(assert (recommend tacan auto-after-update nominal alt

"TACAN is good and can be put in AUTO after the "

"delta-state is complete")))

(defrule tacan-inhibit-bad-tacan

; ; IF

;;

;;

;;

_;;

;;

;;

;;

_;;

;;

;;

_;;

;;

THEN

END

The pass is engaged
No delta-state is in work AND

State error is good or suspect AND
TACAN is not inhibited AND

Range edit ratio is greater than 1
OR

(Bearing edit ratio is greater than 1
while vehicle is not in the cone of confusion

)

Recommend TACAN be inhibited

(sub-phase tacan aif-change)

(engaged-system pass)

(not (need-delta-state $?))_
(gnd-state pass worst-axis over)

(aif pass tacan -inhibit)

(or (edit-ratio pass tacr over)

(and (edit-ratio pass tacb

(cone off)))
=>

(assert

over)

(recommend tacan inhibit-bad-tacan

"TACAN" " should be inhibited")))

off-nominal alt

;,

;,

;,

;,

--;

(defrule tacan-error-before-tacan

IF

THEN

END

For the engaged system

At least one LRU is locked in range AND

Neither range nor bearing is being processed AND
The status of the state error is different from

what it was on the previous cycle

Note the current status of the state error

(sub-phase tacan aif-change)

(engaged-system ?sys)

(prev-tacan-lock range on)

(filter-flag ?sys tacr _process)
(filter-flag ?sys tacb process)

(gnd-state ?sys worst-axis ?status)
?x <- (error-before-tacan ?status)
=>

(retract ?x)

(assert (error-before-tacan ?status)))

11(;

(de frule

;; IF

;;

;;

;; THEN

;;

-- ;; END

tacan-error-after-tacan

For the engaged system

TACAN is being processed AND

The state error is worse now than before TACAN was processed

Recommend TACAN be inhibited

(sub-phase tacan aif-change)

(engaged-system ?sys)

(error-before-tacan ?before)

(filter-flag ?sys tacrltacb process)

(gnd-state ?sys worst-axis ?after& ?before)

(max-miscompare ?before ?after ?after)
=>

(assert (recommend tacan inhibit-bad-tacan
"TACAN made the state error worse.

"inhibited")))

off-nominal

It needs to be "

alt

._ ;

m

(defrule tacan-to-force

IF

THEN

END

The pass is engaged

Range and bearing data-good flags are on AND

No toggle has been requested AND

No TACAN deselects have been requested AND
No delta-state is in work AND

Selected range and bearing errors are acceptable AND

Either range or bearing edit ratio is greater than 1

TACAN is not being forced

Recommend forcing TACAN

(sub-phase tacan aif-change)

(engaged-system pass)

(data-good pass tacr on)

(data-good pass tacb on)

(gnd-state pass worst-axis over)

(not (need-a-toggle))

(not (suggested-deselect ? confirmed))

(not (need-delta-state $?))

(selected-tacan range go)

(selected-tacan bearing go)

(edit-ratio pass tacr|tacb over)
(aif pass tacan force)
=>

(assert (recommend tacan force-tacan off-nominal

"TACAN" " is good and should be forced")))

alt

AND

117

3.9 Baro Altitude

3 - 118

GROUP
Baro Altitude (3.9)

This group checks baro altitude, and recommends (output)
a setting for the baro AIF switch.

CONTROLFACTS
(sub-phase baro ?)

CONTAININGGROUP
Entry

m

; FACTS

deffacts monitoring-baro-phases

)

(deffacts

(first-sub-phase baro

(next-sub-phase baro

analysis-baro-phases

(first-sub-phase baro

; These facts define the sequence of

; sub-phases within the monitoring

; phase of baro

monitoring quality)

; First sub-phase is quality checks

quality flag-status)

; Then comes flag status

analysis

; These facts define the sequence of

; sub-phases within the analysis

; phase of baro

recommendation)

; The only sub-phase is recommendation

-- (deffacts initial-baro-facts

(baro-status unknown)

=,

(prey-filter-flag pass baro

(prey-filter-flag bfs baro

; These facts represent assumptions

; about baro before any data is received

; The quality of baro measurements is

; unknown

off)

; Baro is not being processed in the

; PASS

off)

; Baro is not being processed in the BFS

! ;

;;

;;;

,-_ ;;

;;

;;

;;

;;

;;;

;;;

GROUP

Baro Measurement Quality (3.9.1)

This group of rules determines whether or not baro a!itude measurements

are good. If they are bad, the rules attempt to determine the reason.

CONTROL FACTS

(sub-phase baro quality)

CONTAINING GROUP

119

;; Baro Altitude

defru!e baro-ok-to-perform-baro-checks
; IF

; THEN

; END

Mach is greater than 5 OR

in mach jump region

Do not perform any baro checking

?x <-(sub-phase baro quality)

(or (mach-jump on)

(mach-number ?n&:(> ?n 5.0)))
=>

(retract ?x))

(defrule baro-is-good-bfs

,; IF

THEN

END

For the bfs system

The HSTD is good

Baro was previously not known to be good
Idelta-sell <= Idelta-zl + 500

Baro is good

(sub-phase baro quality)

(hstd good)

?x <- (baro-status -good)

(baro-gnh ?delta-sel)

(engaged-system bfs)

(test (<= (abs ?delta-sel)

(+ (abs (state-error bfs u)) 500.0)))
=>

(assert (status-light baro 0 good))

(retract ?x)

(assert (baro-status good)))

(defrule baro-is-bad-bfs

; IF
w

,;

,;

,;

,;

,;

THEN

END

For the bfs system

The HSTD is good

Baro was previously good or unknown

Idelta-sell > Idelta-zl + 500

Baro is bad

(sub-phase baro quality)

(hstd good)

?x <- (baro-status ?prev-status&goodlunknown)

(baro-gnh ?delta-sel)

120

(engaged-system bfs)

(test (> (abs ?delta-sel)

(+ (abs (state-error bfs u)) 500.0)))
=>

(assert (status-light baro 0 bad))

(if (eq ?prev-status good)
then

(assert (event baro off-nominal mach "Air" " data is bad")))
(retract ?x)

(assert (baro-status bad)))

defrule baro-is-good-pass

IF

For the pass system

The HSTD is good

Baro was previously not known to be good

Idelta-sell <--Idelta-zl + 500
THEN

Baro is good
END

(sub-phase baro quality)

(hstd good)

?x <- (baro-status -good)

(delta-z ?delta-z)

(baro-gnh ?delta-sel)

(engaged-system pass)

(test (<= (abs ?delta-sel)

(+ (abs ?delta-z) 500.0)))
->

(assert (status-light baro 0 good))

(retract ?x)

(assert (baro-status good)))

(defrule

i ;; IF
;;

;;

;;

;;

;; THEN

;; END

baro-is-bad-pass

For the pass system

The HSTD is good

Baro was previously good or unknown

Idelta-sell > Idelta-z I + 500

Baro is bad

i

w

(sub-phase baro quality)

(hstd good)

?x <- (baro-status ?prev-status&goodlunknown)

(delta-z ?delta-z)

(baro-gnh ?delta-sel)

(engaged-system pass)

(test (> (abs ?delta-sel)

(+ (abs ?delta-z) 500.0)))
=>

(assert (status-light baro 0 bad))

m 12.1

(if (eq ?prey-status good)
then

(assert (event baro off-nominal mach "Air" " data is bad")))
(retract ?x)

(assert (baro-status bad)))

(defrule

;; IF

;;

__ ;;

;; THEN

,;;

;; END

baro-roll-reversal

Baro is bad

The vehicle is executing a roll-reversal

Baro is bad because of roll-reversal

(sub-phase baro quality)

?x <- (baro-status bad)

(roll-rate high)
=>

(assert

(assert

(retract

(assert

(status-light baro 0 roll))

(event baro off-nominal mach

"Air" " data is bad due to roll reversal"))

?x)

(baro-status roll-reversal)))

(defrule baro-crew-call

;;

5;;

;;

;;

;;

IF

THEN

END

HSTD is not good

ADTA is crew call

(sub-phase baro quality)
(hstd good)

(not (ADTA crew-call))
=>

(assert (ADTA crew-call))

(assert (status-light baro 0 crew))

(assert (event baro off-nominal mach

"Air" " data is crew call")))

-- (defrule baro-not-crew-call

;; IF

-- ;;

;; THEN

;;

;; END

HSTD is good

ADTA is not crew call

(sub-phase baro quality)

(hstd good)

?x <- (ADTA crew-call)
=>

122

(retract ?x)

(assert (status-light baro 0 blank))

(assert (event baro off-nominal mach

"Air" " data is not crew call")))

i

; GROUP

Baro Flag Status (3.9.2)

This group watches for changes in the baro altitude filter flag. It

also watches to see if the change is caused by entering or leaving

the Mach jump region.

; CONTROL FACTS

(sub-phase baro flag-status)

; CONTAINING GROUP

Baro Altitude

BARO FLAG STATUS

-- (defrule

;; IF

;;

;;

-- ;; THEN

;;

;; END

L
v

baro-enter-mach-j ump

The vehicle was not previously in the mach jump region

The vehicle is now in the mach jump region

Notify the operator that the mach jump region has been entered

(sub-phase baro flag-status)

(not (in-mach-jump))

(mach-jump on)

=>

(assert (in-mach-jump))

(assert (event baro nominal mach "Entering" " Mach jump region")

(defrule

;; IF

;;

;; THEN

;;

;; END

baro-leave-mach-jump

The vehicle was previously in the mach jump region

The vehicle is now out of the mach jump region

Notify the operator that the mach jump region has been exited

(sub-phase baro flag-status)

?x <- (in-mach-jump)

(mach-jump off)

=>

(retract ?x)

(assert (event baro nominal mach "Leaving" " Mach jump region")))

i =

±

123

(defrule

;; IF

;;

;;

;;

;; THEN

;;

v ;;

;; END

baro-filter-flag-changed

For the engaged system

The current value of the baro filter flag

is different from its previous value

Conclude that the value has changed

Notify the operator of the new value

(sub-phase baro flag-status)

(engaged-system ?sys)

(filter-flag ?sys baro ?flag)

?x <- (prey-filter-flag ?sys baro
=>

(retract ?x)

(assert

(assert

?flag)

(prev-filter-flag ?sys baro ?flag))

(event baro nominal mach "air data status is "

?flag)))

;;

;;;

;;

;;

;;;

;;

;;;

;;

GROUP

Baro Recommendations - Ground Available (3.9.3)

This group recommends a setting for the AIF switch when the ground
state is available.

CONTROL FACTS

(sub-phase baro recommendation)

CONTAINING GROUP

Baro Altitude

m

(defrule baro-to-auto

;;

;;

;;

_ ;;

;;

;;

;;

IF

THEN

END

For the pass system

Baro is good
The baro edit ratio is less than 1

Baro is inhibited

Baro is go for nay

(sub-phase baro recommendation)

(baro-status good)

(engaged-system pass)

(edit-ratio pass baro under)

(aif pass baro inhibit)
=>

(assert (recommend baro baro-to-auto

"Air" " data is go for nay")))

nominal mach

u

(defrule baro-to-force

;;

-- ;;

;;

IF

THEN

END

For the pass system

Baro is good

The baro edit ratio is greater than 1

Baro is not being forced

Recommend forcing baro

(sub-phase baro recommendation)

(baro-status good)

(engaged-system pass)

(edit-ratio pass baro over)

(aif pass baro -force)
=>

(assert (recommend baro baro-to-force off-nominal

"Need" " to force air data to nay")))

mach

(defrule baro-end-force

;;

;;

;;

;;

;;

IF

THEN

END

For the pass system

Baro is good
The baro edit ratio is less than 1

Baro is being forced

Recommend returning baro to auto

(sub-phase baro recommendation)

(baro-status good)

(engaged-system pass)

(edit-ratio pass baro under)

(aif pass baro force)
=>

(assert (recommend baro end-baro-force off-nominal

"Need" " to return air data to auto for nay")))

mach

_ (defrule baro-to-inhibit

;;

;;

;;

;;

_ ;;

m

IF

THEN

END

For engaged system
Baro is bad

The vehicle is not in the Mach jump region
Baro is not inhibited

Recommend that baro be inhibited

(sub-phase baro recommendation)

(baro-status good&-unknown)

(mach-jump off)

(engaged-system ?sys)
(aif ?sys baro inhibit)

125

=>

(assert (recommend baro inhibit-baro off-nominal mach

"Air" " data is no-go and should be inhibited")))

w

12{}

3.10 Microwave Scan Beam Landing System

w

3 - 127

/7/
;7

7/
7;

;

77

;/

GROUP

MSBLS (3.10)

This group monitors MSBLS data, recommends (output) which

of the three LRUs should be used, and whether MSBLS
should be used or not.

CONTROL FACTS

(sub-phase msbls ?)

CONTAINING GROUP

Entry

;;; FACTS

(deffacts monitoring-msbls-phases

)

(deffacts

)

(deffacts

(first-sub-phase msbls monitoring

(next-sub-phase

(next-sub-phase

(next-sub-phase

msbls availability

msbls lockon

msbls quality

analysis-msbls-phases

(first-sub-phase msbls analysis

(next-sub-phase msbls recommendation

initial-msbls-facts

(msbls-status 1

(msbls-status 2

(msbls-status 3

(msbls-num-avail

(msbls-num-locked

(msbls-num-locked

(msbls-num-locked

(last-msbls-report

avail)

avail)

avail)

3)

range 0)

azimuth 0)
elevation

1 range

(last-msbls-report 1 range

; Defines the sequence of

; sub-phases in the monitoring

; phase of the MSLBS section.

availability)

; First sub-phase is a check

; for LRU availability

lockon)

; Then comes a check for lock

quality)

; Then comes LRU quality check

watch-flags)

; Last is a flag-status check

; These facts define the

; sequence of sub-phases in the

; analysis phase of MSBLS

recommendation)

; First is recommendations

; based on LRU quality

watch-state)

; Last is recommendation based

; on effects on state error

0)
bias

noise

; These facts represent assumptions

; about MSBLS before any data is

; received

; LRU 1 is available

; LRU 2 is available

; LRU 3 is available

; All 3 LRUs are available

; No LRUs are locked in range

; No LRUs are locked in azimuth

; No LRUs locked in elevation

unknown)

; Do not know if LRU 1 range

; has a bias

unknown)

128

=_

(last-msbls-report 1

(last-msbls-report 1

(last-msbls-report 1

(last-msbls-report 1

(last-msbls-report 2

(last-msbls-report 2

(last-msbls-report 2

(last-msbls-report 2

(last-msbls-report 2

(last-msbls-report 2

(last-msbls-report 3

(last-msbls-report 3

(last-msbls-report 3

(last-msbls-report 3

(last-msbls-report 3

(last-msbls-report 3

(msbls-lru-quality

(msbls-lru-quality

(msbls-lru-quality

(msbls-lru-quality

(msbls-lru-quality

(msbls-lru-quality

(msbls-lru-quality

(msbls-lru-quality

(msbls-lru-quality

(error-before-msbls

1

1

1

2

2

2

3

3

3

under)

; Do not know if LRU 1 range
; has a nolse

azimuth bias unknown)

; Do not know if LRU 1 azimuth

; has a bias

azimuth noise unknown)

; Do not know if LRU 1 azimuth

; has a nolse

elevation bias unknown)

; Do not know if LRU 1 elevation

; has a bias

elevation noise unknown)

; Do not know if LRU 1 elevation

; has a nolse

range bias unknown)

; Do not know if LRU 2 range

; has a bias

range noise unknown)

; Do not know if LRU 2 range
; has a nolse

azimuth bias unknown)

; Do not know if LRU 2 azimuth

; has a bias

azimuth noise unknown)

; Do not know if LRU 2 azimuth

; has a nolse

elevation bias unknown)

; Do not know if LRU 2 elevation

; has a bias

elevation noise unknown)

; Do not know if LRU 2 elevation

; has a nolse

range bias unknown)

; Do not know if LRU 3 range
; has a bias

range noise unknown)

; Do not know if LRU 3 range

; has a noise

azimuth bias unknown)

; Do not know if LRU 3 azimuth

; has a bias

azimuth noise unknown)

; Do not know if LRU 3 azimuth

; has a noise

elevation bias unknown)

; Do not know if LRU 3 elevation

; has a bias

elevation noise unknown)

; Do not know if LRU 3 elevation

; has a nolse

range none) ; no rating on LRU 1 range

azimuth none) ; no rating on LRU 1 azimuth

elevation none) ; no rating on LRU 1 elevation

range none) ; no rating on LRU 2 range

azimuth none) ; no rating on LRU 2 azimuth

elevation none) ; no rating on LRU 2 elevation

range none) ; no rating on LRU 3 range

azimuth none) ; no rating on LRU 3 azimuth

elevation none) ; no rating on LRU 3 elevation

; state error before MSBLS

12{)

(prey-filter-flag pass mlsr off)

(prey-filter-flag pass mlsa off)

(prey-filter-flag pass mlse off)

(prey-data-good pass mlsr off)

(prey-data-good pass mlsa off)

(prev-data-good pass mlse off)

; is within limits

; not processing range

; not processing azimuth

; not processing elevation

; range data-good is off

; azimuth data-good is off

; elevation data-good is off

;;;

;;

_ ;;

;;

;;

;;;

_;;

;;

GROUP (3.10.1)

MSBLS Availability

This group determines which LRUs are available. It also determines

why the unavailable LRUs are unavailable.

CONTROL FACTS

(sub-phase msbls availability)

CONTAINING GROUP

MSBLS

r!

(defrule msbls-commfault

;;

w;;

;;

;;

;;

;;

IF

THEN

END

A MSBLS LRU was not previously commfaulted

The LRU is powered on AND

The commfault flag for that LRU is now on

AND

Notify the operator that the LRU is commfaulted (unless

the whole string is down)

Conclude the LRU is no longer available due to commfault

(sub-phase msbls availability)

?x <- (msbls-status ?lru availlfail)

(msbls-flag commfault ?iru on)

(string-commfault pass ?Iru ?string-flag)
_>

(if (eq ?string-flag off)
then

(assert (event msbls off-nominal alt "Commfault MSBLS " ?Iru)))

(assert (status-light mlsr ?lru commfault))

(assert (status-light mlsa ?iru commfault))

(assert (status-light mlse ?iru commfault))

(retract ?x)

(assert (msbls-status ?iru commfault)))

--(defrule msbls-commfault-clear

! I

_-;;

;;

IF

A MSBLS LRU was previously commfaulted AND

The commfault flag for that LRU is now off

130

THEN

END

Notify the operator that the commfault has cleared (unless

the whole string was down)

Conclude the LRU has the status indicated by the fail flag

(sub-phase msbls availability)

?x <- (msbls-status ?iru commfault)

(msbls-flag commfault ?iru off)

(msbls-flag fail ?iru range ?flagr)

(msbls-flag fail ?iru azimuth ?flaga)

(msbls-flag fail ?Iru elevation ?flage)

(prev-string-cf pass ?Iru ?string-flag)

(msbls-lru-quality ?iru range ?range-status)

(msbls-lru-quality ?iru azimuth ?azimuth-status)

(msbls-lru-quality ?Iru elevation ?elevation-status)
=>

(if (eq ?string-flag off)
then

(assert (event msbls off-nominal alt

"Commfault clear on MSBLS " ?iru)))

(retract ?x)

(if (II (eq ?flagr on)

(eq ?flaga on)

(eq ?flage on))
then

else

(assert (status-light mlsr ?Iru fail))

(assert (status-light mlsa ?Iru fail))

(assert (status-light mlse ?iru fail))

(assert (msbls-status ?iru fail))

(assert

(assert

(assert

(assert

(status-light mlsr

(status-light mlsa

(status-light mlse

(msbls-status ?Iru

?iru ?range-status))

?Iru ?azimuth-status))

?iru ?elevation-status))

avail))))

(defrule msbls-failed

; ; IF

;;

;;

;;

-- ;;

;;

;;

THEN

END

A MSBLS LRU was previously available AND

The fail flag for that LRU is now on

Notify the operator of the LRU failure

Conclude the LRU is no longer available due to _M failure

(sub-phase msbls availability)

?x <- (msbls-status ?iru avail)

(msbls-flag fail ?Iru rangelazimuthlelevation on)
=>

(assert

(assert

(assert

(assert

(retract

(assert

(event msbls off-nominal alt

"MSBLS " ?iru " has been failed by RM"))

(status-light mlsr ?Iru fail))

(status-light mlsa ?iru fail))

(status-light mlse ?iru fail))

?x)
(msbls-status ?iru fail)))

==.

131

(defrule msbls-power-off

;;

_;;
;;
;;

7;

7;

IF

THEN

END

A MSBLS LRU was previously powered on AND

The power indicator for that LRU is now off

Notify the operator that the LRU has lost power

Conclude the LRU is not available due to loss of power

(sub-phase msbls availability)

?x <- (msbls-status ?Iru power-off)

(msbls-flag power ?iru off)
=>

(assert

(assert

(assert

(assert

(retract

(assert

(event msbls off-nominal alt

"MSBLS " ?iru " has been powered off"))

(status-light mlsr ?iru off))

(status-light mlsa ?iru off))

(status-light mlse ?iru off))

?x)

(msbls-status ?iru power-off)))

(defrule msbls-power-on

J;

;;

_;;

;;

_;;

;;

_;;

IF

THEN

END

A MSBLS LRU was previously powered off AND

The power indicator for that LRU is now on

Notify the operator that the LRU has been powered on

Conclude the LRU has the status indicated by the fail flag

(sub-phase msbls availability)

?x <- (msbls-status ?iru power-off)

(msbls-flag power ?iru on)

(msbls-flag fail ?iru range ?flagr)

(msbls-flag fail ?iru azimuth ?flaga)

(msbls-flag fail ?iru elevation ?flage)

(msbls-lru-quality ?iru range ?range-status)

(msbls-lru-quality ?iru azimuth ?azimuth-status)

(msbls-lru-quality ?iru elevation ?elevation-status)
->

(assert (event msbls off-nominal alt

"MSBLS " ?Iru " has been powered on"))

(retract ?x)
(if (II (eq ?flagr on)

(eq ?flaga on)

(eq ?flage on))
then

(assert

(assert

(assert

(assert
else

(assert

(assert

(status-light mlsr

(status-light mlsa

(status-light mlse

(msbls-status ?Iru

(status-light

(status-light

?iru fail))

?iru fail))

?iru fail))

fail))

mlsr ?Iru ?range-status))

mlsa ?lru ?azimuth-status))

132

(assert

(assert

(status-light mlse ?lru ?elevation-status))

(msbls-status ?Iru avail))))

(defrule three-msbls-avail

;; IF

;;

;; THEN

;;

;; END

All MSBLS LRUs are available

The number of available LRUs is 3

(sub-phase

?x <- (msbls-num-avail

(msbls-status 1 avail)

(msbls-status 2 avail)

(msb!s-status 3 avail)
=>

(retract ?x)

(assert (msbls-num-avail

msbls availability)
3)

3)))

(defrule two-msbls-avail

;; IF

;;

;;

;;

;;

;;

;;

THEN

END

MSBLS LRU A is available AND

MSBLS LRU B is available AND

MSBLS LRU C is not available

The number of available LRUs is 2

(sub-phase msbls availability)
?x <- (msbls-num-avail 2)

(msbls-status ?Iru-a avail)

(msbls-status ?Iru-b&-?iru-a avail)

(msbls-status ?Iru-c -avail)

=>

(retract ?x)

(assert (msbls-num-avail 2)))

(defrule one-msbls-avail

;; IF

;;

;;

;;

;;

;;

THEN

END

MSBLS LRU A is available AND

MSBLS LRU B is not available

MSBLS LRU C is not available

AND

The number of available LRUs is 1

(sub-phase msbls availability)

?x <- (msbls-num-avail i)

(msbls-status ?iru-a avail)

(msbls-status ?Iru-b -avail)_
(msbls-status ?iru-c&~?Iru-b avail)

]33

=>

(retract

(assert

?x)

(msbls-num-avail i)))

(defrule no-msbls-avail

;; IF

;; All

;; THEN

;; The

;; END

MSBLS LRUs are unavailable

number of available LRUs is

(sub-phase

?x <- (msbls-num-avail

(msbls-status 1 -avail)

(msbls-status 2 -avail)

(msbls-status 3 -avail)
=>

(retract ?x)

(assert (msbls-num-avail

msbls availability)
0)

0)))

;;

;;; GROUP (3.10.2)

;; MSBLS Lockon Status

-- ;; This group determines how many LRUs are locked onto range, azimuth,

;; and elevation.

;;; CONTROL FACTS

-- ; (sub-phase msbls lockon)

;;
;;; CONTAINING GROUP

;; MSBLS

(defrule check-channel

;;

;;

;;

;;

;;

;;

;;

IF

THEN

END

At least one MSBLS LRU is available AND

No LRU is locked on one of the measurements

The vehicle is below 13000 feet

Ask that the MSBLS channel be verified

AND

(sub-phase msbls lockon)

(msbls-num-avail ~0)

(msbls-lock 1 ?measurement

(msbls-lock 2 ?measurement

(msbls-lock 3 ?measurement

(runway pass ?runway)

(alitutde ?alt)

(test (< ?alt 13000))
=>

off)

off)

off)

134

(assert (recommend msbls check-channel off-nominal alt

"Need to verify MSLBS channel is " =(lookup-msbls ?runway))))

(defrule three-msbls-locked

;;

;;

;;

;;

;;

;;

IF

THEN

END

All LRUs are available AND

All LRUs are locked on a measurement

The number locked for that measurement is 3

If the number locked was previously 0, then notify the

operator that MSBLS is locking on

(sub-phase msbls lockon)

(msbls-num-avail 3)

?x <- (msbls-num-locked ?measurement

(msbls-lock 1 ?measurement on)

(msbls-lock 2 ?measurement on)

(msbls-lock 3 ?measurement on)
=>

(if (= 0 ?old-number)
then

(retract

(assert

?old-number& 3)

(assert (event msbls nominal alt

"MSLBS is locking onto " ?measurement)))

?x)
(msbls-num-locked ?measurement 3)))

(defrule

;; IF

;;

;;

;;

;;

;; THEN

;;

;;

;;
;; END

two-msbls-locked

LRU A is locked on a measurement AND

LRU B is locked on the same measurement

LRU C is not lock on the measurement

or not available

AND

The number of LRUs locked on that measurement is 2

If the number locked was previously 0, then notify the

operator that MSBLS is locking on

(sub-phase msbls lockon)

?x <- (msbls-num-locked ?measurement

(msbls-lock ?iru-a ?measurement on)

(msbls-lock ?iru-b&-?iru-a ?measurement

(or (msbls-lock ?iru-c ?measurement off)

(msbls-num-avail 2))
=>

(if (= 0 ?old-number)

then

(retract

(assert

?old-number& 2)

on)

(assert (event msbls nominal alt

"MSLBS is locking onto " ?measurement)))

?x)
(msbls-num-locked ?measurement 2)))

l

135

(defrule one-msbls-locked

;; IF

;;

;;

;;
;; THEN

;;

;;

;; END

LRU A is locked on a measurement AND

LRU B is not locked on the measurement

LRU C is not locked on the measurement

AND

The number of LRUs locked on that measurement is 1

IF the number locked previously was 0, then notify the

operator that MSBLS is locking on

(sub-phase msbls lockon)

?x <- (msbls-num-locked ?measurement

(msbls-lock

(msbls-lock

(msbls-lock
_>

(if (= 0 ?old-number)
then

(retract

(assert

?old-number&-l)

?iru-a ?measurement on)

?Iru-b ?measurement off)

?Iru-c&-?iru-b ?measurement off)

(assert (event msbls nominal alt

"MSLBS is locking onto " ?measurement)))

?x)
(msbls-num-locked ?measurement i)))

I

(defrule no-msbls-locked

_;;

;;

;;

;;

;;

;;

IF

THEN

END

At least 1 LRU is available

No LRU is locked on a measurement

The number of LRUs locked for that measurement is 0

Notify the operator that MSBLS lost lock

(sub-phase msbls lockon)

?x <- (msbls-num-locked ?measurement

(msbls-num-avail ?hum)

(test (>= ?num i))

(msbls-lock 1 ?measurement off)

(msbls-lock 2 ?measurement off)

(msbls-lock 3 ?measurement off)
=>

(assert (event msbls nominal alt

(retract

(assert

0)

"MSLBS lost lock in " ?measurement))

?x)

(msbls-num-locked ?measurement 0)))

_;;

;;;

;;

;;

-_;;

;;

= ;;

GROUP (3.10.3)
MSBLS Error Checks

This group check measurement errors and determines the quality of
the three LRUs.

136

;;; CONTROL FACTS

-- ; (sub-phase msbls quality)

;;

;;; CONTAINING GROUP

;; MSBLS

;;

-- (defrule initial-msbls-check

;;

;;

;;

;;

;;

;;

IF

THEN

END

The no quality statement has yet been made about a
measurement AND

The measurement bias is within tolerance AND

The measurement noise is within tolerance

The report that the measurement is good

(declare (salience i0))

(sub-phase msbls quality)

?x <- (last-msbls-report ?iru ?measurement bias unknown)

?y <- (last-msbls-report ?iru ?measurement noise unknown)

(msbls-error ?Iru ?measurement bias under)

(msbls-error ?iru ?measurement noise under)
=>

(assert (event msbls nominal alt

"MSBLS " ?iru " " ?measurement " is good"))

(retract ?x)

(retract ?y)

(assert (last-msbls-report ?iru ?measurement bias under))

(assert (last-msbls-report ?iru ?measurement noise under)))

--- (defrule msbls-error-change

;;

;;

;;

;;

;;

;;

IF

THEN

END

Either the noise or bias on a measurement has a different

status than it did previously

Notify the operator of the new status

(sub-phase msbls quality)

?x <- (last-msbls-report ?iru

?old-status)

(msbls-error ?iru ?measurement

(units ?measurement ?units)
=>

(if

?measurement ?error

?error ?status& ?old-status)

(! (eq ?status under))
then

(bind ?a (msbls-error ?Iru ?measurement ?error))

(assert (event msbls off-nominal alt
"MSBLS " ?iru " " ?measurement " has a " ?error

" of " ?a ?units))

else

(if (! (eq ?old-status unknown))
then

m

137

(retract

(assert

(assert (event msbls off-nominal alt
"MSBLS " ?lru " " ?measurement ?error

" has cleared up"))))

?x)
(last-msbls-report ?iru ?measurement ?error ?status)))

(defrule msbls-lru-quality-i

;;

;;

;;

;;

;;

IF

THEN

END

A MSBLS LRU is unavailable or unlocked in a measurement

That LRU has no quality rating for that measurement

(sub-phase msbls quality)

?x <- (msbls-lru-quality ?lru ?measurement -none)

(or (msbls-status ?iru -avail)

(msbls-lock ?iru ?measurement off))

(measurement-name ?name&mlsrlmlsalmlse ?measurement)
=>

(assert (status-light ?name ?Iru none))

(retract ?x)

(assert (msbls-lru-quality ?iru ?measurement none)))

!

(defrule msbls-lru-quality-2

;;

;;

;;

;;

;;

;;

w ;;

;;

IF

THEN

END

A MSBLS LRU is available AND

The LRU is locked on a measurement AND

The noise and bias ratings on the measurement indicate

a quality rating different from the one previously

given to the LRU

Note the new quality rating for the LRU

(sub-phase msbls quality)

(msbls-status ?lru avail)

(msbls-lock ?iru ?measurement on)

(msbls-error ?iru ?measurement bias ?bias)

(msbls-error ?iru ?measurement noise ?noise)

(msbls-quality ?bias ?noise ?quality)

?x <- (msbls-lru-quality ?iru ?measurement -?quality)

(measurement-name ?name&mlsrlmlsalmlse ?measurement)
=>

(assert (status-light ?name ?iru ?quality))

(retract ?x)

(assert (msbls-lru-quality ?lru ?measurement ?quality)))

;;

;;; GROUP (3.10.4)

;; MSBLS Flag Monitoring

;;

188

If!

-- ;;

rl!

;;

This group watches for changes in the MSBLS data good flags and
filter flags.

CONTROL FACTS

(sub-phase msbls watch-flags)

CONTAINING GROUP

MSBLS

(defrule msbls-filter-flag-changed

;;

;;

IF

; ; THEN

;;

;;

_ ; ; END

The value of the MSBLS filter flag is different from

its previous value

Conclude that the value has changed

Notify the operator if the new value is "process"

w

(sub-phase msbls watch-flags 1
(filter-flag pass ?meas&mlsrlmlsalmlse ?flag& off)

?x <- (prey-filter-flag pass ?meas ?flag)

(measurement-name ?meas ?measurement)
=>

(retract ?x)

(assert (prey-filter-flag pass ?meas

(if (eq ?flag process)
then

(assert

?flag))

(event msbls nominal alt

" MSBLS " ?measurement

" filter flag changed to the "

?flag " position "))))

- (defrule msbls-data-good-flag-changed

;;

_;;
;;

;;

;;

-- ;;

IF

THEN

END

The current value of a MSBLS data-good flag is different from

its previous value

Notify the operator of the new value

(sub-phase msbls watch-flags)
(data-good pass ?meas&mlsr|mlsalmlse ?flag)

?x <- (prev-data-good pass ?meas -?flag)

(measurement-name ?meas ?measurement)
=>

(retract ?x)

(assert (prey-data-good pass ?meas ?flag))

(assert (event msbls nominal alt

"MSBLS " ?measurement " data-good flag is " ?flag)))

-- (defrule msbls-dilemma

IF
MSBLSdilemma flag is

THEN
Warn the operator

END

on for any measurement

(sub-phase msbls watch-flags)
(msbls-dilemma ?measurement on)
=>
(assert (event msbls off-nominal alt

"MSBLS " ?measurement " is in dilemma")))

;;

;;; GROUP (3.10.5)

;; MSBLS Recommendations

;;

;; This group determines what actions need to be taken on the 5:SBLS

;; to keep it from corrupting the nay state.

;;; CONTROL FACTS

; (sub-phase msbls recommendation)

;;

;;; CONTAINING GROUP

;; MSBLS

;;

(defrule three-level-msbls-deselect-i

;; IF

;; 3 LRUs are available AND

;; 2 LRUs are locked on AND

;; 1 LRU is bad

;; THEN

;; Recommend deselecting the bad LRU

;; END

(sub-phase msbls recommendation)

(msbls-num-avail 3)

(msbls-num-locked ?measurement 2)

(msbls-lru-quality ?iru-a ?measurement

(msbls-lru-quality ?iru-b ?measurement
z>

(assert

bad)

good)

(recommend msbls deselect-msbls-lru off-nominal alt

"Need to power off MSBLS " ?iru-a " due to bad " ?measurement)))

w ;

(defrule three-level-msbls- force-tacan- 1

IF

THEN

END

3 LRUs are available

2 LRUs are locked on

2 LRUs are bad in the

AND

AND

same measurement

Recommend forcing TACAN

(sub-phase msbis recommendation)

w 140

(msbls-num-avail 3)

(msbls-num-locked ?measurement 2)

(msbls-lru-quality ?lru-a ?measurement bad)

(msbls-lru-quality ?lru-b&-iru-a ?measurement bad)
=>

(assert (recommend msbls force-tacan off-nominal alt

"Need to force TACAN because of two bad MSBLS LRUs")))

u

(defrule three-level-msbls-rm-fail

;;

;;

;;

m

IF

THEN

END

3 LRUs are available AND

3 LRUs are locked on AND

1 LRU is bad

Recommend deselecting (for a noise problem) or waiting for

RM isolation (for a bias problem)

(sub-phase msbls recommendation)

(msbls-num-avail 3)

(msbls-num-locked ?measurement 3)

(msbls-lru-quality ?iru-a ?measurement

(msbls-error ?iru-a ?measurement bias

(msbls-lru-quality ?lru-b ?measurement

(msbls-lru-quality ?Iru-c&~iru-b
=>

(if (eq ?bias
then

(assert

bad)

?bias)

good)
?measurement

else

(assert

good)

over)

(recommend msbls msbls-rm-fail off-nominal
"RM should fail MSBLS " ?iru-a " due to "

?measurement " bias"))

(recommend msbls deselect-msbls off-nominal

"Need to power off MSBLS " ?iru-a " due to "

?measurement " noise"))))

alt

alt

--(defrule three-level-msbls-deselect-2

;;

;;

;;

!

IF

THEN

END

3 LRUs are available AND

3 LRUs are locked on AND

2 LRUs are bad in the same measurement

Recommend deselecting the bad LRUs

(sub-phase msbls recommendation)

(msbls-num-avail 3)

(msbls-num-locked ?measurement 3)

(msbls-lru-quality ?iru-a ?measurement bad)

(msbls-lru-quality ?Iru-b&-iru-a ?measurement bad)

(msbls-lru-quality ?Iru-c ?measurement good)
=>

(assert (recommend msbls deselect-msbls-lru off-nominal

"Need to power off MSBLS " ?iru-a " and "

],I.I

alt

- ?iru-b " due to bad " ?measurement)))

(defrule three-level-msbls-force-tacan-2

IF

THEN

END

3 LRUs are available AND
3 LRUs are locked on AND

3 LRUs are bad on the same measurement

Recommend forcing TACAN

m

(sub-phase

(msbls-num-avail 3)

(msbls-num-locked ?measurement

(msbls-lru-lock 1 ?measurement

(msbls-lru-lock 2 ?measurement

(msbls-lru-lock 3 ?measurement
=>

(assert

msbls recommendation)

3)
bad)

bad)

bad)

(recommend msbls force-tacan off-nominal alt
"Need to force TACAN due to bad " ?measurement

" in all MSBLS LRUs")))

D

(defrule two-level-msbls-deselect

IF

THEN

END

2 LRUs are available AND

2 LRUs are locked on AND

1 LRU is bad

Recommend deselecting the bad LRU

(sub-phase msbls recommendation)

(msbls-num-avail 2)

(msbls-num-locked ?measurement 2)

(msbls-lru-quality ?iru-a ?measurement

(msbls-lru-quality ?Iru-b ?measurement
->

(assert

bad)

good)

(recommend msbls deselect-msbls-lru off-nominal alt

"Need to power off MSBLS " ?iru-a " due to bad " ?measurement)))

(de frule two-level-msbls-force-tacan

IF

THEN

END

2 LRUs are available AND

2 LRUs are locked on AND

2 LRUs are bad in the same measurement

Recommend forcing TACAN

(sub-phase msbls

(msbls-num-avail

recommendation)

2)

142

(msbls-num-locked ?measurement 2)

(msbls-lru-quality ?iru-a ?measurement bad)

(msbls-lru-quality ?iru-b&-iru-a ?measurement bad)
=>

(assert (recommend msbls force-tacan off-nominal alt

"Need to force TACAN due to bad MSBLS " ?measurement)))

(defrule one-level-msbls-force-tacan

;;

;;

;;

-- ;;

;;

IF

THEN

END

1 LRU is available AND

1 LRU is locked on AND

1 LRU is bad

Recommend forcing TACAN

(sub-phase msbls recommendation)

(msbls-num-avail I)

(msbls-num-locked ?measurement i)

(msbls-lru-quality ?iru ?measurement bad)
=>

(assert (recommend msbls force-tacan off-nominal alt

"Need to force TACAN due to bad MSBLS " ?measurement)))

_ (defrule do-not-force-tacan

;;

;;

;;

IF

THEN

END

Forcing TACAN is recommended AND

TACAN is no go

Cancel force TACAN recommendation AND

Recommend powering off MSBLS

(sub-phase msbls recommendation)

?x <- (recommend msbls force-tacan off-nominal alt $?)

(selected-tacan ?measurement no-go)
=>

(retract ?x)

(assert (recommend msbls do-not-force-tacan off-nominal alt

"Need to power off MSBLS because TACAN is no-go in " ?measurement)))

;;;

;;

;;

= ;;

_ ;;

;;

i !
I _

!

GROUP (3.10.6)
Effect of MSBLS on State Errors

This group checks to see if MSBLS processing makes the state error

worse.

14;{

CONTROL FACTS

(sub-phase msbls watch-state)

;;;

;;; CONTAINING GROUP

;;

II

(defrule error-before-msbls

;;

_ ;;

;;

;;

;;

IF

THEN

END

At least 1 iru is locked on range AND

No MSBLS is being processed

Remember the current worst-axis state error

(sub-phase msbls watch-state)

(msbls-num-locked range _0)

(filter-flag pass mlsr _process)

(filter-flag pass mlsa _process)
(filter-flag pass mlse process)

(gnd-state pass worst-axis ?status)
?x <- (error-before-msbls ?status)
=>

(retract ?x)

(assert (error-before-msbls ?status)))

-- (defrule error-after-msbls

;;

;;

;;

_ ;;

IF

THEN

END

MSBLS is being processed AND

The state error is worse than before MSBLS was processed

Recommend forcing TACAN

(sub-phase msbls watch-state)

(error-before-msbls ?before)
(filter-flag pass mlsrlmlsalmlse process)

(gnd-state pass worst-axis ?after& ?before)

(max-miscompare ?before ?after ?after)
=>

(assert (recommend msbls force-tacan off-nominal alt

"Need to force TACAN because MSBLS is causing error growth")))

144

3.11 High _ Trajectory Determinator

v

|_

3 - 145

;i

;;
;;

;;

;;

i;

GROUP (3.11)

HSTD monitoring

These rules have the task of determining the status of the HSTD state
vector. THESE RULES DEPEND PRIMARILY ON OPERATOR INPUT. The rules

can detect when the filter is stopped, and they can detect some

situations where the filter is not converged. In addition, the

operator can indicate when the filter is bad. The operator must

specify when the filter is good; the rules never do that automatically.

CONTROL FACTS

none

CONTAINING GROUP

Entry

;;; FACTS

(deffacts monitoring-hstd-phases ; These facts list the sequence of

; sub-phases in the monitoring phase
; of the hstd rules.

(first-sub-phase hstd monitoring status)

; There is only 1 sub-phase: hstd-status

)

-(deffacts initial-hstd-facts

(hstd stopped)

(restart-time 0.0)

)

; These facts represent assumptions

; about the HSTD vector prior to

; receiving any data.

; The filter is not running

; Time of last restart not yet known

(defrule hstd-start

;;

_;;

;;

;;

IF

THEN

END

The HSTD has not been running AND

The 'stopped' indicator is off

Conclude the HSTD is running but has not converged

- r

11 =

(sub-phase hstd status)

?x <- (hstd stopped)

(hstd-stop-flag off)
=>

(assert (status-light state

(retract ?x)

(assert (hstd bad)))

ground bad))

14G

(defrule hstd-bad

IF

THEN

END

The HSTD was good AND

The operator entered the HSTD-bad indicator

Conclude the HSTD is bad (not converged)

(sub-phase hstd

?x <- (hstd good)

?y <- (operator-input
=>

(assert (status-light

(retract ?x)

(retract ?y)

(assert (hstd bad)))

status)

hstd bad)

state ground bad))

defrule hstd-good

;;

IF

THEN

END

The HSTD was bad AND

The operator entered the HSTD-good indicator AND

At least i0 seconds have elapsed since the last restart

Conclude the HSTD is good

=

(sub-phase hstd status)

?x <- (hstd bad)

?y <- (operator-input hstd good)

(restart-time ?restart-time)

(current-time ?time)

(test (>= (- ?time ?restart-time) i0.0))
=>

(assert (status-light state ground good))

(retract ?x)

(retract ?y)

(assert (hstd good)))

-- (defrule hstd-stopped

;;

;;

_ ;;

IF

THEN

END

The HSTD was running AND

The stopped indicator is on

Conclude the HSTD has been stopped

(sub-phase hstd status)

?x <- (hstd -stopped)

(hstd-stop-flag on)
=>

(assert (status-light state

(retract ?x)

(assert (hstd stopped)))

ground stopped))

147

! ! /

(defrule hstd-editing

IF

THEN

END

The HSTD was good AND

Less that 3 stations are being processed AND

A given station is not being excluded AND

There is data coming from that station AND

At least one good measurement of a given type was
available from that station AND

All of the measurements of that type from that station

were edited by the filter

Conclude the HSTD is bad

(sub-phase hstd status)

?x <- (hstd good)

(or (exclude ?station-i on)

(tracking-avail ?station-i 0))

(exclude ?station-2&-?station-i off)

(tracking-avail ?station-2 -0)

(tracking-good ?station-2 ?meas ?hum-good)

(test (>= ?hum-good i))

(tracking-edit ?station-2 ?meas ?hum-good)
=>

(assert (status-light state ground bad))

(retract ?x)

(assert (hstd bad)))

-- (defrule hstd-prop

;;

;;

;;

IF

THEN

END

The HSTD was good AND

The prop flag is on

Conclude the HSTD is bad

(sub-phase hstd status)

?x <- (hstd good)

(hstd-prop-flag on)
=>

(assert (status-light state

(retract ?x)

(assert (hstd bad)))

ground bad))

(defrule hstd-covariance

-- ;; IF

;;

_ ;;

;;
;; THEN

The HSTD was good AND

The RSS position or velocity covariance diagonals are

too large

148

;; Conclude the HSTD is bad

;; END

(sub-phase hstd status)

?x <- (hstd good)

(hstd-covariance ? over)
=>

(assert (status-light state

(retract ?x)

(assert (hstd bad)))

ground bad))

v

defrule hstd-restart

IF

THEN

END

The HSTD is available AND

The HSTD restart flag is on

Conclude the HSTD is bad

Record the current time as the time of the last restart

(sub-phase hstd status)

(hstd-status available)

?x <- (hstd ?)

(hstd-restart-flag on)

?y <- (restart-time _restart-time)

(current-time ?time& ?restart-time)
=>

(assert (status-light state ground

(retract ?x)

(assert (hstd bad))

(retract ?y)

(assert (restart-time ?time)))

bad))

w-v

- Z

14:1

3.12 Control Flow

qw-

L

v

v

z

3 - 150

; GROUP
; Control (no reference number)

; This group handles initial start up of rule
; execution, and controls the phasing of rule
; groups.

; CONTROL FACTS

; none

; CONTAINING GROUP

; Entry

[

;; Facts

deffacts control-initial-phase

(phase fact-assertion)

deffacts control-phases

(next-phase fact-assertion monitoring)

(next-phase monitoring analysis)

(next-phase analysis output)

(next-phase output fact-assertion)

(defrule
(phase
=>

(call

(call

(call

(call

- (call

control-kickoff

fact-assertion)

(operator-input))

(check-facts off))

(fact-assertion))

(display-time))

(check-facts on)))

-- (defrule control-change-phases

(declare (salience -i000))

(next-phase ?current-phase

(not (end-of-data $?))

_ ?x <- (phase ?current-phase)

=>

(retract ?x)

-- (assert (phase ?next-phase)))

?next-phase)

(defrule control-end-of-cycle

(declare (salience -999))

(single step)

(phase output)
=>

151

(halt))

defrule control-kickoff-subphase

(declare (salience i00))

(phase ?phase)

(first-sub-phase ?module ?phase ?subphase)
:>

(assert (sub-phase ?module ?subphase)))

w

defru!e control-next-subphase

(declare (salience -i00))

?x <- (_ub-phase 9module

(next-sub-phase 9module
=>

(retract ?x)

(assert

?current)

?current ?next)

(sub-phase ?module ?next)))

_-(defrule control-last-subphase

(declare (salience -200))

?x <- (sub-phase $?)
=>

_p

(retract ?x))

! !

v

152

3.13 Operator Input

v

3 - 153

w

;;

;;

;;

;i

GROUP Operator Inputs

This group takes the following operator inputs and makes appropriate

adjustments to the fact base;

stop

subsystem
delta-state

bfs-no-go

runway

toggle-tacan

The hstd status is handled by the hstd rules because proper handling

involves coordination with other hstd flags (see hstd.r).

CONTROL FACTS

(phase fact-assertion)

CONTAINING GROUP

Entry

(defrule operator-stop

;; IF
;; The operator issued the stop command

;; THEN

;; Retract the operator's command

;; Halt CLIPS

;; ENDIF

m

(phase fact-assertion)

?x <- (operator-input
=>

(retract ?x)

(halt))

stop)

(defrule operator-subsystem

;;

;;

;;

;;

IF

The operator commanded
THEN

Retract the operator's

Reconfigure the screen
ENDIF

a new subsystem window

command

to show the commanded subsystem

(phase fact-assertion)

?x <- (operator-input subsystem ?number)
=>

(retract ?x)

(call (select-subsystem ?number)))

154

(defrule
L

-- ;; IF

;;

;;

;; THEN

;;

;;

;;

;; ENDIF

operator-delta-state

The operator issued a delta-state command (position-only,

position-and-velocity, or none) AND

No delta-state was in work previously

Retract the operator's command

If the command was anything but "none", note that a delta-state

is in work and note the type of delta-state

(phase fact-assertion)

?x <- (operator-input delta-state

(not (need-delta-state $?))
=>

(retract ?x)

(call (update-configuration

(if (! (eq ?type none))
then

(assert

?type)

delta-state ?type))

(need-delta-state ?type))))

- (defrule

;; IF

;;

;;

w ;;

;; THEN

;;

;;

;;

;; ENDIF

operator-changed-delta-state

The operator issued a delta-state command (position-only,

position-and-velocity, or none) AND

A delta-state was already in work

Retract the operator's command

If the command was anything but "none", change the type
of delta-state in work; otherwise, note that no

delta-state is in work.

(phase fact-assertion)

?x <- (operator-input delta-state

?y <- (need-delta-state $?)
=>

(retract ?x ?y)

(call (update-configuration

(if (! (eq ?type none))
then

(assert

?type)

delta-state ?type))

(need-delta-state ?type))))

_ (defrule operator-bfs-no-go

;; IF

;; THEN

;;

;;

__ ;; ENDIF

The operator issued the BFS-NO-GO command

Retract the operator's command

Change the BFS status to no-go

155

(phase fact-assertion)

?x <- (operator-input bfs-no-go)

?y <- (bfs-status $?)
=>

(call (update-configuration bfs

(retract ?x ?y)

(assert (bfs-status no-go)))

no-go))

(defrule operator-runway-selection

;;

/;

I !

IF

THEN
The operator has completed a runway selection

Change the desired runway to the specified slot

Change the desired TACAN to the primary slot in the same

area as the runway

(phase fact-assertion)

?x <- (operator-input runway ?rw-slot)

?a <- (runway desired $?)

?b <- (desired-tacan $?)

?c <- (desired-channel $?)
->

(retract ?x)

(if (&& (>= ?rw-slot i) (<= ?rw-slot 30))
then

(retract ?a ?b ?c)

(bind ?name (lookup-rw-name ?rw-slot))

(bind ?area (trunc (/ (+ ?rw-slot i) 2)))

(bind ?tac-slot (- (* ?area 2) i))

(bind ?channel (lookup-tacan ?tac-slot))

(assert (runway desired ?rw-slot))

(assert (desired-tacan ?tac-slot))

(assert (desired-channel ?channel))

(call (update-configuration runway ?name))

(call (update-configuration tacan ?channel))
else

(assert (event site nominal alt

"There is no runway slot " ?rw-slot " in the table"))))

(defrule operator-toggle-tacan

_a. ° ,

! l

i _-_ ;;

IF

THEN

ENDIF

The operator issued the TOGGLE command AND

Toggle capability is available

Retract the operator's command

Change the desired TACAN to the other station in the

currentarea

(phase fact-assertion)

?x <- (operator-input toggle-tacan)

(toggle-available yes)

?y <- (desired-tacan ?current-slot)

156

l

(same-area ?current-slot ?other-slot)

?z <- (desired-channel $?)
=>

(bind ?channel (lookup-tacan ?other-slot))

(call (update-configuration tacan ?channel))

(retract ?x ?y ?z)

(assert (desired-tacan ?other-slot))

(assert (desired-channel ?channel)))

(defrule operator-cant-toggle

;;

;;

_- ;;

;;

;;

IF

THEN

ENDIF

The operator issued the TOGGLE command AND

Toggle capability is not available

Retract the operator's command

Inform the operator that toggle is not available

(phase fact-assertion)

?x <- (operator-input toggle-tacan)

(toggle-available no)
=>

(retract ?x)

(assert (event tacan nominal alt

"No " "toggle capability at this landing site")))

m

157

3.14 Output Manaqement

w

L

3 - 158

I f

i;

;;

;;

/;

;7

;;

;;

;;

;;

l !

; GROUP Output Management

These groups determine what needs to be displayed and how it is

to be displayed.

CONTROL FACTS

(phase output)

CONTAINING GROUP

Entry

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

;;

; GROUP Event Management

This group manages the transmission of event notices to the message

windows. An event notice is received as a fact with the following
form:

(event ?subsystem ?mode ?tag $?text)

where ?subsystem = the name of the subsystem generating the event
?mode = nominal or off-nominal

?tag = alt, mach, or none

$?text - the text of the message

CONTROL FACTS

(phase output)

CONTAINING GROUP

Output Management

_ (defrule output-event

;; IF

;;
'' THENT?

_ ;;

;;

;; END

An event needs to be printed

Print it on the main message

subsystem window

window and the appropriate

v

r

L

?X <- (event ?subsystem

(phase output)
=>

(bind ?n I)

(bind ?i (length $?text))

(while (<= ?n ?i)

(bind ?a (nth ?n $?text))

(if (numberp ?a)
then

(call (format
else

(call (format

(bind ?n (+ ?n i)))

(call (format message

?mode ?tag $?text)

message "%g" ?a))

message "%s" ?a)))

"%n"))

(call (message main ?mode event ?tag))
(call (message ?subsystem ?mode event
(retract ?x))

?tag))

;;;

;;

I ;

= ;;

;;

;;

;;

;;

;;

;;

v ;;

;;

;;

;;

I !

;;

_ ;;

;;

; !

, !

. °
f r

;;

;;;

;;;

;;
, 0
! I

GROUP Recommendation Management

This group of rules handles the printout of recommendations at regular

intervals. Recommendations are sent to this group from other rules
in the form of a fact:

(recommend ?subsystem ?id ?mode ?tag $?text)

where ?subsystem = the name of the subsystem generating the event

?id = name of the recommendation (to distinguish it from other

recommendations).
?mode = nominal or off-nominal

?tag = alt, mach, or none

$?text = the text of the message

The recommendation rules also keep an internal record of active

recommendations using facts of the following form:

(active-message ?subsystem ?id ?a ?b ?time $?text)

where ?subsystem = same as recommendation subsystem
?id - same as recommendation id

?a = message number on main message window

?b = message number on subsystem message window
?time - time the recommendation was last checked

$?text - the text of the message

For a recommendation to remain active, the rule that asserts it must

re-assert it on every cycle. If a recommendation is not asserted on

a given cycle, then it is assumed to no longer be active.

CONTROL FACTS

(phase output)

CONTAINING GROUP

Output Management

_ (defrule output-recommendation

?x <- (recommend ?subsystem ?id

(not (active-message ?subsystem

(current-time ?time)

_- (phase output)
=>

(bind ?n i)

(bind ?i (length $?text))
(while (<= ?n ?i)

(bind ?a (nth ?n $?text))

(if (numberp ?a)
-- then

(call

?mode ?tag $?text)

?id _ _ _ $?text))

(format message "%g" ?a))

160

else

(call (format message "%s" ?a)))

(bind ?n (+ ?n i)))

(call (format message "%n"))

(bind ?a (message main ?mode recommend ?tag))

(bind ?b (message ?subsystem ?mode recommend

(retract ?x)

(assert (active-message ?subsystem ?id ?a ?b

?tag))

?time $?text)))

'defrule output-hold-recommendation

?x <- (active-message ?subsystem

?y <- (recommend ?subsystem ?id

(current-time ?time)

(test (> ?time ?last-time))

(phase output)
=>

(retract ?x)

(retract ?y)

(assert

?id ?a ?b ?last-time $?text)

_ $?text)

(active-message ?subsystem ?id ?a ?b ?time $?text)))

(defrule output-end-recommendation

-- ?x <- (active-message ?subsystem

(not (recommend ?subsystem ?id

(current-time ?time)

(test (> ?time ?last-time))

(phase output)
-- =>

(call (erase-msg ?a))

(call (erase-msg ?b))

: (retract ?x))

?id ?a ?b ?last-time $?text)

_ $?text))

;

;

;

_: ;

;

(

**

;; GROUP Status Light Management

; These rules control updates to the status lights. Statuses are

; determined by other rules and are sent to this group as facts:

; (status-light ?id ?sub-id ?value)

; where ?id is a subsystem identifier, ?sub-id is an LRU number or

; component identifier, and ?value is the value to be displayed.

;; CONTROL FACTS

(phase output)

;; CONTAINING GROUP

; Output Management

!

deffacts output-light-locations ; These facts define the locatio

; (line and column number) for each

; of the subsystems and LRUs

161

(light-location runway pass 1 i0)

(light-location runway bfs 1 15)

(light-location runway ground 1 20)

(light-location tacan pass 2 i0)

(light-location tacan bfs 2 15)

(light-location state pass 3 i0)

(light-location state bfs 3 15)

(light-location state ground 3 20)

(light-location three-state 1 6 i0)

(light-location three-state 2 6 15)

(light-location three-state 3 6 20)

(light-location pass-imu 1 7 i0)

(light-location pass-imu 2 7 15)

(light-location pass-imu 3 7 20)

(light-location bfs-imu 1 8 i0)

(light-location bfs-imu 2 8 15)

(light-location bfs-imu 3 8 20)

(light-location drag 0 9 i0)

(light-location tacr 1 i0 i0)

(light-location tacr 2 i0 15)

(light-location tacr 3 i0 20)

(light-location tacb 1 ii i0)

(light-location tacb 2 Ii 15)

(light-location tacb 3 ii 20)

(light-location tacb cone ii 0)

(light-location baro 0 12 i0)

(light-location mlsr 1 13 i0)

(light-location mlsr 2 13 15)

(light-location mlsr 3 13 20)

(light-location mlsa 1 14 i0)

(light-location mlsa 2 14 15)

(light-location mlsa 3 14 20)

(light-location mlse 1 15 I0)

(light-location mlse 2 15 15)

(light-location mlse 3 15 20)

(light-location tlm 0 16 i0)

(deffacts output-display-values

J

(display-value unknown

(display-value blank

(display-value none

(display-value go

(display-value good

(display-value high

(display-value low

(display-value no-go

(display-value bias

; These facts define the display values

; for all of the possible values of

; the status lights

" " normal)

" " normal)

" " normal)

" GO " normal)

"GOOD" normal)

"HIGH" normal)

"LOW " normal)

"NOGO" blink)

"BIAS" blink)

(display-value resolver "RSLV" blink)

(display-value drift "DRFT" blink)

(display-value velocity "VEL " blink)

(display-value attitude "ATTD" blink)

(display-value suspect "SPCT" blink)

(display-value timing "TIME" blink)

(display-value noise "NOIS" blink)

162

(display-value atmos "ATMS" blink)

(display-value mach "MACH" blink)

(display-value roll "ROLL" blink)

(display-value cone "CONE" blink)

(display-value commfault "COMF" inverse)

(display-value fail "FAIL" inverse)

(display-value deselect "DSEL" inverse)

(display-value off "OFF " inverse)

(display-value bad "BAD " inverse)

(display-value stopped "STOP" inverse)

(defrule output-update-status-light

?x <- (status-light ?id ?sub-id ?value)
(display-value ?value ?word ?mode)

(light-location ?id ?sub-id ?row ?column)
(phase output)
=>

(retract ?x)

(call (status-light ?row ?column ?mode ?word)))

163

3.15 Dat_____aTables

3 - 164

l;

;;; GROUP

;; Data Tables (no reference number)

;;

- ;;

;;; CONTROL FACTS

;; None

;;

;;

;;; CONTAINING GROUP

;; Entry

;;

;;

(deffacts tables-common-lru

Common-lru is used to determine the iru that is common to two pairs

(common-lru ?pair-i ?pair-2 ?Iru-id)

(common-lru p-l-2 p-l-3 I)

(common-lru p-l-3 p-l-2 I)

(common-lru p-2-3 p-l-2 2)

(common-lru p-l-2 p-2-3 2)

(common-lru p-l-3 p-2-3 3)

(common-lru p-2-3 p-l-3 3)

; Excluded-lru is used to determine which lru is excluded from a pair

; (excluded-lru ?pair ?iru-id)

(deffacts tables-excluded-lru

(excluded-lru p-l-2 3)

_. (excluded-lru p-l-3 2)
(exciuded-lru p-2-3 i)

)

)

(deffacts tables-lrus-in-pair

Lrus-in-pair is used to determine which lrus are included in a pair

(irus-in-pair ?pair ?iru-a ?iru-b)

Note that if ?pair is the only bound variable, then there are two matches.

p-l-2 1 2)

p-l-2 2 i)

p-l-3 1 3)

p-l-3 3 I)

p-2-3 2 3)

p-2-3 3 2)

(lrus-in-pair

(lrus-in-pair

(lrus-in-pair

(lrus-in-pair

(irus-in-pair

(irus-in-pair

; Min-miscompare is used to determine the "smaller" of two miscomparison

; ratings, where the ratings are defined to be "zero", "under", "o50",

; and "over", in that order.

; (min-miscompare ?status-i ?status-2 ?min-status)

(deffacts tables-min-miscompare

165

(min-mlscompare

(min-miscompare

(min-miscompare

(min-miscompare

(mln-mlscompare

(mln-mlscompare

(min-miscompare

(min-miscompare

(min-miscompare

(min-miscompare

(min-miscompare

(min-miscompare

(min-miscompare

(min-miscompare

(min-miscompare

(min-miscompare

zero zero zero)

under zero zero)

o50 zero zero)

over zero zero)

zero under zero)

under under under)

o50 under under)

over under under)

zero o50 zero)

under 050 under)

o50 o50 o50)

over o50 050)

zero over zero)

under over under)

o50 over 050)

over over over)

; Max-miscompare is used to determine the "larger" of two miscomparison

; ratings, where the ratings are defined to be "zero", "under", "o50",
=- • and "over", in that order.

(max-miscompare ?status-i ?status-2 ?max-status)

,

(deffacts tables-max-miscompare

(max-miscompare

(max-miscompare

(max-miscompare

(max-miscompare

(max-mlscompare

(max-mlscompare

(max-mlscompare

(max-mlscompare

(max-mlscompare

(max-mlscompare

(max-mlscompare

(max-mlscompare

(max-mlscompare

(max-mmscompare

(max-mlscompare

(max-mlscompare

zero

under

o5O

over

zero

under

o5O

over

zero

under

050

over

zero

under

o50

over

zero zero)

zero under)

zero 050)

zero over)

under under)

under under)

under 050)

under over)

050 050)

050 050)

050 o50)

050 over)

over over)

over over)

over over)

over over)

]

Fault matrix is used to determine the IMU component that has failed

based on which algorithms (velocity, attitude, or ACC) are indicating

a miscomparison with other IMUs.

(fault-matrix ?vel-status ?att-status ?acc-status ?fault)

where each status is under, o50, or over; and ?fault is as follows:

good
bias

resolver

drift

velocity
attitude

suspect

| i;

i < (deffacts tables-fault-matrix_J

- no fault

- accelerometer bias or scale factor error

- resolver error

- gyro drift

- undiagnosable velocity problem

- undiagnosable attitude problem

- undiagnosable problem

166

1 w

(fault-matrlx

(fault-matrlx

(fault-matrlx

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrlx

(fault-matrix

(fault-matrlx

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrlx

(fault-matrix

(fault-matrix

(fault-matrlx

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrix

(fault-matrix

under under under good)

o50 under under velocity)

over under under velocity)

under 050 under attitude)

under over under attitude)

under under 050 attitude)

under under over attitude)

o50 050 under resolver)

over o50 under resolver)

050 over under resolver)

over over under resolver)

o50 under o50 bias)

over under 050 bias)

050 under over bias)

over under over bias)

under o50 o50 drift)

under over o50 drift)

under o50 over drift)

under over over drift)

050 o50 o50 suspect)

over o50 o50 suspect)

050 over 050 suspect)

over over 050 suspect)

050 050 over suspect)

over 050 over suspect)

050 over over suspect)

over over over suspect)

(deffacts tables-quality-table

(quality-table zero

(quality-table under

(quality-table 050

(quality-table over

)

quality-table is used to determine the quality of a state

vector (good ,suspect, or bad) based on a comparison with

another state vector or the ground (zero, under, 050, or over)

good)

good)

suspect)

bad)

(deffacts tables-tacan-quality

tacan-quality is used to determine the quality of a tacan lru based on

comparisons with the ground or other irus.

(tacan-quality ?slope ?bias ?noise ?quality)

where ?slope and ?noise are under or over; ?bias is under, 050, or over;

and quality is good, bias, timing, or noise.

under under under good)

under under over noise)

under 050 under bias)

under 050 over noise)

under over under bias)

under over over noise)

over under under timing)

over under over noise)

over 050 under timing)

(tacan-quality

(tacan-quality

(tacan-quality

(tacan-quality

(tacan-quality

(tacan-quality

(tacan-quality

(tacan-quality

(tacan-quality

v 167

(tacan-quality over o50 over
(tacan-quality over over under

(tacan-quality over over over

noise)

timing)

noise)

!

(deffacts tables-msbls-quality

msbls-quality is used to determine the quality of a msbls iru based on

comparisons with the ground or other Irus.

(msbls-quality ?bias ?noise ?quality)

where ?bias and ?noise are under, 050, or over; and quality is good or bad

(msbls-quality under

(msbls-quality under

(msbls-quality under

(msbls-quality 050

(msbls-quality 050

(msbls-quality 050

(msbls-quality over

(msbls-quality over

(msbls-quality over

under good)

o50 good)

over bad)

under good)

o50 good)

over bad)

under bad)

o50 bad)

over bad)

; measurement-name is used to connect the 4-character measurement name used by

; filter flags and data good flags with the TACAN and MSBLS measurement type

(deffacts tables-measurement-names

(measurement-name tacr range)

(measurement-name tacb bearing)

(measurement-name mlsr range)
(measurement-name mlsa azimuth)

(measurement-name mlse elevation)

v

_)

"units" is used to determine the unit name to print out for a given

; measurement

(deffacts tables-units

(units

(units

(units

(units

(units

(units

(units

(units

(units

(units

(units

range feet)

bearing degrees)

azimuth degrees)

elevation degrees)

drag feet)

tacr feet)

baro feet)

mlsr feet)

tacb degrees)

mlsa degrees)

mlse degrees)

!

168

;; same-area is used to determine which slot is in the same area as a

-- ;; given slot

(deffacts tables-same-area

(same-area 1 2)

(same-area 2 i)

(same-area 3 4)

(same-area 4 3)

(same-area 5 6)

(same-area 6 5)

(same-area 7 8)

(same-area 8 7)

(same-area 9 i0)

(same-area i0 19)

(same-area ii 12)

(same-area 12 ii)

"-_" (same-area 13 14)

(same-area 14 13)

(same-area 15 16)

(same-area 16 15)

(same-area 17 18)

(same-area 18 17)

(same-area 19 20)

(same-area 20 19)

(same-area 21 22)

(same-area 22 21)

(same-area 23 24)

(same-area 24 23)

(same-area 25 26)

(same-area 26 25)

(same-area 27 28)

(same-area 28 27)

(same-area 29 30)

-- (same-area 30 29)

w
%

16,c

=

L

Section 4

REFERENCES

1) "Knowledge Requirements For the Onboard Navigation (ONAV)

Console Expert/Trainer System, "Mission Support Directorate,

Mission Planning & Analysis Division, NASA Johnson Space

Center, ENTRY phase specifications, Baseline Version 1.0,

October 1987, JSC internal Note #JSC-22657.

4 - 1

End of Document

r

m

_v

